
1

Welcome to the Class

Department of Computing and Information System

Md. Selim Hossain, Senior Lecturer, CIS, DIU



Design pattern

2
Md. Selim Hossain, Senior Lecturer, CIS, DIU 2

Md. Selim Hossain

Senior Lecturer

Department of Computing and Information System

Daffodil International University (DIU),Dhaka, Bangladesh



Design Pattern

Facade pattern hides the complexities of the system and provides an

interface to the client using which the client can access the system. This type of

design pattern comes under structural pattern as this pattern adds an interface

to existing system to hide its complexities.

This pattern involves a single class which provides simplified methods required

by client and delegates calls to methods of existing system classes.



Implementation

We are going to create a Shape interface and concrete classes

implementing the Shape interface. A facade class ShapeMaker is defined

as a next step.

ShapeMaker class uses the concrete classes to delegate user calls to

these classes. FacadePatternDemo, our demo class, will

use ShapeMaker class to show the results.



Design Patterns - Strategy Pattern

In Strategy pattern, a class behavior or its algorithm can be changed at run

time. This type of design pattern comes under behavior pattern.

In Strategy pattern, we create objects which represent various strategies

and a context object whose behavior varies as per its strategy object. The

strategy object changes the executing algorithm of the context object.



Implementation

We are going to create a Strategy interface defining an action and concrete

strategy classes implementing the Strategy interface. Context is a class

which uses a Strategy.

StrategyPatternDemo, our demo class, will use Context and strategy

objects to demonstrate change in Context behaviour based on strategy it

deploys or uses.



Flyweight pattern is primarily used to reduce the number of objects created

and to decrease memory footprint and increase performance. This type of

design pattern comes under structural pattern as this pattern provides ways to

decrease object count thus improving the object structure of application.

Flyweight pattern tries to reuse already existing similar kind objects by storing

them and creates new object when no matching object is found. We will

demonstrate this pattern by drawing 20 circles of different locations but we will

create only 5 objects. Only 5 colors are available so color property is used to

check already existing Circle objects.



Implementation

We are going to create a Shape interface and concrete

class Circle implementing the Shape interface. A factory class ShapeFactory is

defined as a next step.

ShapeFactory has a HashMap of Circle having key as color of the Circle object.

Whenever a request comes to create a circle of particular color

to ShapeFactory, it checks the circle object in its HashMap, if object

of Circle found, that object is returned otherwise a new object is created, stored

in hashmap for future use, and returned to client.

FlyWeightPatternDemo, our demo class, will use ShapeFactory to get

a Shape object. It will pass information (red / green / blue/ black / white)

to ShapeFactory to get the circle of desired color it needs.





Thanks to All


