
Composite pattern is used where we need to treat a group of objects in similar way as a single

object. Composite pattern composes objects in term of a tree structure to represent part as well

as whole hierarchy. This type of design pattern comes under structural pattern as this pattern

creates a tree structure of group of objects.

This pattern creates a class that contains group of its own objects. This class provides ways to

modify its group of same objects.

We are demonstrating use of composite pattern via following example in which we will show

employees hierarchy of an organization.

Implementation

We have a class Employee which acts as composite pattern actor class. CompositePatternDemo,

our demo class will use Employee class to add department level hierarchy and print all

employees.

Step 1

Create Employee class having list of Employee objects.

Employee.java

import java.util.ArrayList;

import java.util.List;

public class Employee {

 private String name;

 private String dept;

 private int salary;

 private List<Employee> subordinates;

 // constructor

 public Employee(String name,String dept, int sal) {

 this.name = name;

 this.dept = dept;

 this.salary = sal;

 subordinates = new ArrayList<Employee>();

 }

 public void add(Employee e) {

 subordinates.add(e);

 }

 public void remove(Employee e) {

 subordinates.remove(e);

 }

 public List<Employee> getSubordinates(){

 return subordinates;

 }

 public String toString(){

 return ("Employee :[Name : " + name + ", dept : " + dept +

", salary :" + salary+"]");

 }

}

Step 2

Use the Employee class to create and print employee hierarchy.

CompositePatternDemo.java

public class CompositePatternDemo {

 public static void main(String[] args) {

 Employee CEO = new Employee("John","CEO", 30000);

 Employee headSales = new Employee("Robert","Head Sales",

20000);

 Employee headMarketing = new Employee("Michel","Head

Marketing", 20000);

 Employee clerk1 = new Employee("Laura","Marketing", 10000);

 Employee clerk2 = new Employee("Bob","Marketing", 10000);

 Employee salesExecutive1 = new Employee("Richard","Sales",

10000);

 Employee salesExecutive2 = new Employee("Rob","Sales",

10000);

 CEO.add(headSales);

 CEO.add(headMarketing);

 headSales.add(salesExecutive1);

 headSales.add(salesExecutive2);

 headMarketing.add(clerk1);

 headMarketing.add(clerk2);

 //print all employees of the organization

 System.out.println(CEO);

 for (Employee headEmployee : CEO.getSubordinates()) {

 System.out.println(headEmployee);

 for (Employee employee : headEmployee.getSubordinates()) {

 System.out.println(employee);

 }

 }

 }

}

Step 3

Verify the output.

Employee :[Name : John, dept : CEO, salary :30000]

Employee :[Name : Robert, dept : Head Sales, salary :20000]

Employee :[Name : Richard, dept : Sales, salary :10000]

Employee :[Name : Rob, dept : Sales, salary :10000]

Employee :[Name : Michel, dept : Head Marketing, salary :20000]

Employee :[Name : Laura, dept : Marketing, salary :10000]

Employee :[Name : Bob, dept : Marketing, salary :10000]

The Composite Pattern has four participants:

1. Component – Component declares the interface for objects in the composition and

for accessing and managing its child components. It also implements default

behavior for the interface common to all classes as appropriate.

2. Leaf – Leaf defines behavior for primitive objects in the composition. It represents

leaf objects in the composition.

3. Composite – Composite stores child components and implements child related

operations in the component interface.

4. Client – Client manipulates the objects in the composition through the component

interface.

When to use Composite Design Pattern?

Composite Pattern should be used when clients need to ignore the difference between

compositions of objects and individual objects. If programmers find that they are using

multiple objects in the same way, and often have nearly identical code to handle each of them,

then composite is a good choice, it is less complex in this situation to treat primitives and

composites as homogeneous.

1. Less number of objects reduces the memory usage, and it manages to keep us away

from errors related to memory like java.lang.OutOfMemoryError

2. Although creating an object in Java is really fast, we can still reduce the execution

time of our program by sharing objects.

When not to use Composite Design Pattern?

1. Composite Design Pattern makes it harder to restrict the type of components of a

composite. So it should not be used when you don’t want to represent a full or

partial hierarchy of objects.

2. Composite Design Pattern can make the design overly general. It makes harder to

restrict the components of a composite. Sometimes you want a composite to have

only certain components. With Composite, you can’t rely on the type system to

enforce those constraints for you. Instead, you’ll have to use run-time checks.

