
1

Welcome to the Class

Department of Computing and Information System

Md. Selim Hossain, Senior Lecturer, CIS, DIU



Design pattern

2
Md. Selim Hossain, Senior Lecturer, CIS, DIU 2

Md. Selim Hossain

Senior Lecturer

Department of Computing and Information System

Daffodil International University (DIU),Dhaka, Bangladesh



Design Pattern

Design patterns represent the best practices used by experienced

object-oriented software developers. Design patterns are solutions to

general problems that software developers faced during software

development. These solutions were obtained by trial and error by

numerous software developers over quite a substantial period of time.



What is Gang of Four (GOF)?

In 1994, four authors Erich Gamma, Richard Helm, Ralph Johnson and John

Vlissides published a book titled Design Patterns - Elements of Reusable

Object-Oriented Software which initiated the concept of Design Pattern in

Software development.

These authors are collectively known as Gang of Four (GOF). According to

these authors design patterns are primarily based on the following principles of

object orientated design.

•Program to an interface not an implementation

•Favor object composition over inheritance



Usage of Design Pattern

Design Patterns have two main usages in software development.

>Common platform for developers

Design patterns provide a standard terminology and are specific to particular

scenario. For example, a singleton design pattern signifies use of single object

so all developers familiar with single design pattern will make use of single object

and they can tell each other that program is following a singleton pattern.

>Best Practices

Design patterns have been evolved over a long period of time and they provide

best solutions to certain problems faced during software development. Learning

these patterns helps unexperienced developers to learn software design in an

easy and faster way.



Types of Design Patterns

As per the design pattern reference book Design Patterns - Elements of

Reusable Object-Oriented Software , there are 23 design patterns which

can be classified in three categories: Creational, Structural and Behavioral

patterns.





Creational Patterns

These design patterns provide a way to create objects while hiding the

creation logic, rather than instantiating objects directly using new operator.

This gives program more flexibility in deciding which objects need to be

created for a given use case.

Structural Patterns

These design patterns concern class and object composition. Concept of

inheritance is used to compose interfaces and define ways to compose objects

to obtain new functionalities.

J2EE-Java 2 Platform Enterprise Edition

J2EE Patterns

These design patterns are specifically concerned with the presentation tier. 

These patterns are identified by Sun Java Center.



Factory pattern is one of the most used design patterns in Java. This type of

design pattern comes under creational pattern as this pattern provides one of

the best ways to create an object.

In Factory pattern, we create object without exposing the creation logic to the

client and refer to newly created object using a common interface.

Implementation

We're going to create a Shape interface and concrete classes implementing

the Shape interface. A factory class ShapeFactory is defined as a next step.

FactoryPatternDemo, our demo class will use ShapeFactory to get

a Shape object. It will pass information (CIRCLE / RECTANGLE / SQUARE)

to ShapeFactory to get the type of object it needs.



Graphical Example of Design pattern



Design Pattern

• Well known patterns

–Model View Controller (MVC)

–Facade pattern



Model-View-Controller

• Model – data model

• View – presentation of the model

• Controller – controls the flow / interactions of
the view and model



Model-View-Controller

• The model-view-controller (MVC) design
pattern specifies that an application consist of
a data model, presentation information, and
control information.

• The pattern requires that each of these be
separated into different objects.



Model-View-Controller

• The model (for example, the data information) contains only
the pure application data; it contains no logic describing how
to present the data to a user.

• The view (for example, the presentation information)
presents the model's data to the user. The view knows how
to access the model's data, but it does not know what this
data means or what the user can do to manipulate it.

• Finally, the controller (for example, the control information)
exists between the view and the model. It listens to events
triggered by the view and executes the appropriate reaction
to these events. In most cases, the reaction is to call a
method on the model.



Model-View-Controller



Thanks to All


