
General Form of an Applet (cont’d)

• An applet overrides a set of methods in the class Applet to implement its
functionality. These methods are used as an interface with the browser or
the applet viewer.

• An applet does not need to override those methods it does not use.

• The following lists the most important methods that are usually used:

import java.applet.*;

import java.awt.*;

public class AppletName extends Applet

{

public void init(){ . . . }

public void start(){ . . . }

public void stop(){ . . . }

public void destroy(){ . . .}

public void paint(Graphics g){ . . .}

}

Applet Initialization and Termination

• When an applet begins, the browser calls the following methods, in this
sequence: init(), start().

• Every time the applet is redrawn, the method paint() is called.

• When an applet is terminated, the following sequence of methods is
invoked: stop(), destroy().

Method Comment

init() Applets do not usually have main method; instead they have the init()
method that, like main(), is invoked by the execution environment. It
is the first method called for any applet. It is called only once during
the run-time of an applet.

start() Called by the execution environment when an applet should start or
resume execution. It is automatically called after init() when an applet
first begins.

stop() Called to suspend execution of the applet. Once stopped, an applet is
restarted when the execution environment calls start().

destroy() Called just before the applet is terminated. Your applet should override
this method if it needs to perform any cleanup prior to its destruction.

Applet methods

public void init ()

public void start ()

public void stop ()

public void destroy ()

public void paint (Graphics)

Also:
public void repaint()

public void update (Graphics)

public void showStatus(String)

public String getParameter(String)

public void init ()

• init() is the first method to execute

– init() is an ideal place to initialize variables

– init() is the best place to define the GUI
Components (buttons, text fields, checkboxes,
etc.), lay them out, and add listeners to them

– Almost every applet you ever write will have an
init() method

start(), stop() and destroy()

• start() and stop() are used when the Applet is doing time-
consuming calculations that you don’t want to continue when
the page is not in front

• public void start() is called:
– Right after init()

– Each time the page is loaded and restarted

• public void stop() is called:
– When the browser leaves the page
– Just before destroy()

• public void destroy() is called after stop()
– Use destroy() to explicitly release system resources (like threads)
– System resources are usually released automatically

Methods are called in this order

• init and destroy are only called
once each

• start and stop are called
whenever the browser enters and
leaves the page

• do some work is code called by
your listeners

• paint is called when the applet
needs to be repainted

init()

start()

stop()

destroy()

do some work

public void paint(Graphics g)

• Needed if you do any drawing or painting
other than just using standard GUI
Components

• Any painting you want to do should be done
here, or in a method you call from here

• Painting that you do in other methods may
or may not happen

• Never call paint(Graphics), call repaint()

repaint()

• Call repaint() when you have changed
something and want your changes to show up on
the screen

– You do not need to call repaint() when something in
Java’s own components (Buttons, TextFields, etc.)

– You do need to call repaint() after drawing commands
(drawRect(...), fillRect(...), drawString(...), etc.)

• repaint() is a request--it might not happen

• When you call repaint(), Java schedules a call to
update(Graphics g)

update()

• When you call repaint(), Java schedules a
call to update(Graphics g)

• Here's what update does:

public void update(Graphics g) {

// Fills applet with background color,

then

paint(g);

}

The paint() method

• The paint() method is called by the execution environment (i.e. the
browser) each time the applet has to be redrawn.

• The inherited paint() method is empty. In order to draw anything on the
applet, this method must be overridden.

• paint() method takes an object of class Graphics as an input argument,
which is passed by the execution environment.

public void paint(Graphics g){

. . .

}

• This Graphics object represents a drawing area. It has methods to draw
strings and many shapes. Also, it can manipulate fonts and colors.

The Graphics Object
• A Graphics object has a coordinate system that is illustrated

below:

• Anything that is drawn on the Graphics object, appears on the
applet.

• Some of the drawing methods of the Graphics object are:
– drawString()
– drawLine()
– drawRect()
– drawOval()

(0,0) x

y

Displaying Strings Using the Graphics Object

• To display a string on the Graphics object, the method drawString() can be
used. It has the following arguments:
void drawString(String str, int x, int y)

– str is the string to be displayed, x and y are the coordinates of the top left
point of the string.

• For example, the following applet displays the string “Hello World!!”
starting at the point (50,25). Its file name must be HelloApplet.java.

import java.applet.*;

import java.awt.*;

public class HelloApplet extends Applet {

public void paint(Graphics g) { // overriding paint() method

g.drawString("Hello world!", 50, 25);

}

}

Placing an Applet in a Web Page

• Recall that web pages are written in HTML. HTML language describes the
appearance of a page using tags. For example, <html> is a tag. Another
tag is <body>. Some tags have a closing tag. For example, <html> is closed
by </html>.

• HTML is based on text, just like Java. You can use any editor (like Notepad
or JCreator) to write HTML files. HTML files should have the extension
HTML, like (first.html). All HTML pages should look like:

<html>

<body>

The body of the html page… write whatever you like here.
</body>

</html>

Placing an Applet in a Web Page (cont’d)

• To place an applet in a web page, the <applet> tag is used in the body of
an HTML page as follows:
<applet code=“HelloApplet.class” width=600 height=100>

</applet>

• The parts in green are called attributes. The applet tag has three
mandatory (non-optional) attributes:
– code: the name of the class file of the applet.
– width: the width of the applet, in pixels.
– height: the height of the applet, in pixels.

• If the class file is not at the same folder as the HTML page, the codebase
attribute is used to indicate the location of the class file relative to the
directory that has the HTML page.
<applet code=“HelloApplet.class” codebase=“app\” width=600
height=100>

</applet>

Colors

• The class Color of java.awt package is used to define Color objects.

• All colors can be specified as a mix of three primary colors: red, green, and
blue. A particular color can be specified by three integers, each between 0
and 255, or by three float values, each between 0.0 and 1.0.

• The class Color has some pre-defined colors that are commonly used.

Color RGB Value
(float)

RGB Value
(integer)

Color.magen
ta

1.0F, 0.0F,
1.0F

255, 0, 255

Color.orange 1.0F, 0.8F,
0.0F

255, 200, 0

Color.pink 1.0F, 0.7F,
0.7F

255, 175,
175

Color.red 1.0F, 0.0F,
0.0F

255, 0, 0

Color.white 1.0F, 1.0F,
1.0F

255, 255,
255

Color.yellow 1.0F, 1.0F,
0.0F

255, 255, 0

Color RGB Value

(float)

RGB Value
(integer)

Color.black 0.0F, 0.0F, 0.0F 0, 0, 0

Color.blue 0.0F, 0.0F, 1.0F 0, 0, 255

Color.cyan 0.0F, 1.0F, 1.0F 0, 255, 255

Color.gray 0.5F, 0.5F, 0.5F 128, 128,
128

Color.darkGra
y

0.25F, 0.25F,
0.25F

64, 64, 64

Color.lightGra
y

0.75F, 0.75F,
0.75F

192, 192,
192

Color.green 0.0F, 1.0F, 0.0F 0, 255, 0

Colors (cont’d)

• A Color object can be created using one of two constructors:
Color(int red, int green, int blue)

Color(float red, float green, float blue)

• For example:
Color c1 = new Color(255, 100, 18);

Color c2 = new Color(0.2F, 0.6F, 0.3F);

• By default, the Graphics object has a black foreground and a
light gray background. This can be changed using the following
methods (of the Graphics object):

void setBackground(Color newColor)

void setForeground(Color newColor)

void setColor(Color newColor)

Colors (cont’d)

• The following example displays some strings in different colors.
• Although it is possible to set the background and foreground colors in the

paint() method, a good place to set these colors is in the init() method.

import java.awt.*; import java.applet.*;

public class MyApplet extends Applet {

public void init() {

setBackground(Color.blue);

setForeground(Color.yellow);

}

public void paint(Graphics g) {

g.drawString("A yellow string", 50, 10);

g.setColor(Color.red) ;

g.drawString("A red string", 50, 50);

g.drawString("Another red string", 50, 90);

g.setColor(Color.magenta) ;

g.drawString("A magenta string", 50, 130);

}

}

Drawing Some Shapes
• An oval can be drawn using the method drawOval() as follows:

void drawOval(int x, int y, int width, int height)

• A rectangle can be drawn using the method drawRect() as
follows:
void drawRect(int x, int y, int width, int height)

• A line linking two points can be drawn using the method
drawLine() as follows:
void drawLine(int x1, int y1, int x2, int y2)

• To draw a shape using a specific color, the method setColor()
should be used before drawing the shape.

• There are no methods called drawCircle() or drawSquare().
– How can we draw a circle or a square..???

Executing a Java Applet
• A Java applet must be compiled into bytecode before it

can be used in a web page.

• When a web page containing an <applet> tag is opened,
the associated bytecode is downloaded from the
location specified by the CODE or CODEBASE attribute.
This location can be in the local machine or in a
machine across the web.

• To interpret the applet bytecode, the browser must
have a Java plug-in.

• Also, an applet can be executed using the applet viewer,
which comes with the JDK.

Comparing Applets with Applications

An Application An Applet

Runs independently Has to run inside another program,
called execution environment (like a
web browser or an applet viewer)

Starts by the main() method Starts by the init() method

Doesn’t have to extend any class Has to extend java.applet.Applet class

Can work with command-line (like
what are always doing), or using a
graphical user-interface (GUI)

{More on this in ICS-201}

Almost always works with GUI

Has an unrestricted access to the
machine resources

Has a restricted access to the machine
resources (cannot open files or run
other programs) {Security
reasons}

A Simple Java Applet: Drawing a
String

• Now, create applets of our own

– Take a while before we can write applets like in
the demos

– Cover many of same techniques

• Upcoming program

– Create an applet to display

"Welcome to Java Programming!"

– Show applet and HTML file, then discuss them line
by line

© 2002 Prentice Hall.

All rights reserved.

Outline

Java applet

Program Output

1 // Fig. 3.6: WelcomeApplet.java

2 // A first applet in Java.

3

4 // Java core packages

5 import java.awt.Graphics; // import class Graphics

6

7 // Java extension packages

8 import javax.swing.JApplet; // import class JApplet

9

10 public class WelcomeApplet extends JApplet {

11

12 // draw text on applet’s background

13 public void paint(Graphics g)

14 {

15 // call inherited version of method paint

16 super.paint(g);

17

18 // draw a String at x-coordinate 25 and y-coordinate 25

19 g.drawString("Welcome to Java Programming!", 25, 25);

20

21 } // end method paint

22

23 } // end class WelcomeApplet

import allows us to use

predefined classes (allowing

us to use applets and

graphics, in this case).

extends allows us to inherit the

capabilities of class JApplet.

Method paint is guaranteed to

be called in all applets. Its first

line must be defined as above.

java.sun.com/products/jdk/1.3/
http://www.netscape.com/

© 2002 Prentice Hall. All rights reserved.

3.3 A Simple Java Applet: Drawing a String

– Comments

• Name of source code and description of applet

– Import predefined classes grouped into packages

• import statements tell compiler where to locate classes used

• When you create applets, import the JApplet class

(package javax.swing)

• import the Graphics class (package java.awt) to draw

graphics

– Can draw lines, rectangles ovals, strings of characters

• import specifies directory structure

5 import java.awt.Graphics; // import class Graphics

8 import javax.swing.JApplet; // import class JApplet

1 // Fig. 3.6: WelcomeApplet.java

2 // A first applet in Java.

© 2002 Prentice Hall. All rights reserved.

3.3 A Simple Java Applet: Drawing a String

– Applets have at least one class definition (like applications)

• Rarely create classes from scratch

– Use pieces of existing class definitions

– Inheritance - create new classes from old ones (ch. 15)

– Begins class definition for class WelcomeApplet

• Keyword class then class name

– extends followed by class name

• Indicates class to inherit from (JApplet)

– JApplet : superclass (base class)

– WelcomeApplet : subclass (derived class)

• WelcomeApplet now has methods and data of JApplet

10 public class WelcomeApplet extends JApplet {

© 2002 Prentice Hall. All rights reserved.

3.3 A Simple Java Applet: Drawing a String

– Class JApplet defined for us

• Someone else defined "what it means to be an applet"

– Applets require over 200 methods!

• extends JApplet

– Inherit methods, do not have to define them all

• Do not need to know every detail of class JApplet

10 public class WelcomeApplet extends JApplet {

© 2002 Prentice Hall. All rights reserved.

3.3 A Simple Java Applet: Drawing a String

– Class WelcomeApplet is a blueprint

• appletviewer or browser creates an object of class

WelcomeApplet

– Keyword public required

– File can only have one public class

– public class name must be file name

10 public class WelcomeApplet extends JApplet {

© 2002 Prentice Hall. All rights reserved.

3.3 A Simple Java Applet: Drawing a String

– Our class inherits method paint from JApplet

• By default, paint has empty body

• Override (redefine) paint in our class

– Methods paint, init, and start

• Guaranteed to be called automatically

• Our applet gets "free" version of these by inheriting from
JApplet

– Free versions have empty body (do nothing)

– Every applet does not need all three methods

• Override the ones you need

– Applet container “draws itself” by calling method paint

13 public void paint(Graphics g)

© 2002 Prentice Hall. All rights reserved.

3.3 A Simple Java Applet: Drawing a String

– Method paint

• Lines 13-21 are the definition of paint

• Draws graphics on screen

• void indicates paint returns nothing when finishes task

• Parenthesis define parameter list - where methods receive data

to perform tasks

– Normally, data passed by programmer, as in
JOptionPane.showMessageDialog

• paint gets parameters automatically

– Graphics object used by paint

• Mimic paint's first line

13 public void paint(Graphics g)

© 2002 Prentice Hall. All rights reserved.

3.3 A Simple Java Applet: Drawing a String

– Calls version of method paint from superclass JApplet

– Should be first statement in every applet’s paint method

– Body of paint

• Method drawString (of class Graphics)

• Called using Graphics object g and dot operator (.)

• Method name, then parenthesis with arguments

– First argument: String to draw

– Second: x coordinate (in pixels) location

– Third: y coordinate (in pixels) location

– Java coordinate system

• Measured in pixels (picture elements)

• Upper left is (0,0)

16 super.paint(g);

19 g.drawString("Welcome to Java Programming!", 25, 25);

© 2002 Prentice Hall. All rights reserved.

3.3.1 Compiling and Executing WelcomeApplet

• Running the applet

– Compile

• javac WelcomeApplet.java

• If no errors, bytecodes stored in WelcomeApplet.class

– Create an HTML file

• Loads the applet into appletviewer or a browser

• Ends in .htm or .html

– To execute an applet

• Create an HTML file indicating which applet the browser (or
appletviewer) should load and execute

© 2002 Prentice Hall. All rights reserved.

3.3.1 Compiling and Executing WelcomeApplet

– Simple HTML file (WelcomeApplet.html)

• Usually in same directory as .class file

• Remember, .class file created after compilation

– HTML codes (tags)

• Usually come in pairs

• Begin with < and end with >

– Lines 1 and 4 - begin and end the HTML tags

– Line 2 - begins <applet> tag

• Specifies code to use for applet

• Specifies width and height of display area in pixels

– Line 3 - ends <applet> tag

1 <html>
2 <applet code = "WelcomeLines.class" width = "300" height = "40">

3 </applet>
4 </html>

© 2002 Prentice Hall. All rights reserved.

3.3.1 Compiling and Executing WelcomeApplet

– appletviewer only understands <applet> tags

• Ignores everything else

• Minimal browser

– Executing the applet

• appletviewer WelcomeApplet.html

• Perform in directory containing .class file

1 <html>
2 <applet code = "WelcomeLines.class" width = "300" height = "40">

3 </applet>
4 </html>

© 2002 Prentice Hall. All rights reserved.

3.4 Two More Simple Applets: Drawing Strings
and Lines

• More applets

– First example

• Display two lines of text

• Use drawString to simulate a new line with two

drawString statements

– Second example

• Method g.drawLine(x1, y1, x2, y2)

– Draws a line from (x1, y1) to (x2, y2)

– Remember that (0, 0) is upper left

• Use drawLine to draw a line beneath and above a string

© 2002 Prentice Hall.

All rights reserved.

Outline1 // Fig. 3.8: WelcomeApplet2.java

2 // Displaying multiple strings in an applet.

3

4 // Java core packages

5 import java.awt.Graphics; // import class Graphics

6

7 // Java extension packages

8 import javax.swing.JApplet; // import class JApplet

9

10 public class WelcomeApplet2 extends JApplet {

11

12 // draw text on applet’s background

13 public void paint(Graphics g)

14 {

15 // call inherited version of method paint

16 super.paint(g);

17

18 // draw two Strings at different locations

19 g.drawString("Welcome to", 25, 25);

20 g.drawString("Java Programming!", 25, 40);

21

22 } // end method paint

23

24 } // end class WelcomeApplet2

1. import

2. Class

WelcomeApplet2

(extends

JApplet)

3. paint

3.1 drawString

3.2 drawString

on same x

coordinate, but

15 pixels downThe two drawString

statements simulate a newline. In

fact, the concept of lines of text

does not exist when drawing

strings.

java.sun.com/products/jdk/1.3/
http://www.netscape.com/

© 2002 Prentice Hall.

All rights reserved.

Outline

HTML file

Program Output

1 <html>

2 <applet code = "WelcomeApplet2.class" width = "300" height = "60">

3 </applet>

4 </html>

java.sun.com/products/jdk/1.3/
http://www.netscape.com/

© 2002 Prentice Hall.

All rights reserved.

Outline

WelcomeLines.java

2. Class

WelcomeLines

(extends

JApplet)

3. paint

3.1 drawLine

3.2 drawLine

3.3 drawString

Program Output

1 // Fig. 3.10: WelcomeLines.java
2 // Displaying text and lines
3
4 // Java core packages
5 import java.awt.Graphics; // import class Graphics

6
7 // Java extension packages
8 import javax.swing.JApplet; // import class JApplet

9
10 public class WelcomeLines extends JApplet {

11
12 // draw lines and a string on applet’s background

13 public void paint(Graphics g)

14 {

15 // call inherited version of method paint

16 super.paint(g);

17
18 // draw horizontal line from (15, 10) to (210, 10)

19 g.drawLine(15, 10, 210, 10);

20
21 // draw horizontal line from (15, 30) to (210, 30)

22 g.drawLine(15, 30, 210, 30);

23
24 // draw String between lines at location (25, 25)

25 g.drawString("Welcome to Java Programming!", 25, 25);

26
27 } // end method paint

28
29 } // end class WelcomeLines

Draw horizontal lines with
drawLine (endpoints have same

y coordinate).

java.sun.com/products/jdk/1.3/
http://www.netscape.com/

© 2002 Prentice Hall.

All rights reserved.

Outline

HTML file

1 <html>

2 <applet code = "WelcomeLines.class" width = "300" height = "40">

3 </applet>

4 </html>

java.sun.com/products/jdk/1.3/
http://www.netscape.com/

