
1

Module Road Map

Refactoring

▪ Why Refactoring?

▪ Examples

▪ Common Refactorings

2

Refactoring » What is Refactoring?

◼ Refactoring is the process of changing a

software system so that

❑ the external behavior is not altered, but

❑ the internal structure is improved.

◼ Refactoring (http://www.refactoring.com/) is a

“behavior-preserving transformation.”

❑ Small changes per transformation

❑  less likely to go wrong

❑ System works after each change

http://www.refactoring.com/

3

Refactoring » Organizing Java Code

◼ Eclipse comes with extensive support for

organizing and refactoring Java code

◼ It is possible to:

❑ Generate getters and setters for the fields

❑ Organize missing import statements

❑ Move fields, methods, classes

❑ Rename methods, classes, packages

4

Refactoring » Why Refactoring?

◼ Methods might no longer do (only) what their

name suggests.

◼ Functionality that should be in two different

classes might be in the same class.

◼ Functionality that should be in one class

might be duplicated in two or more classes.

◼ Improve the design of existing code.

◼ Gain a better understanding of the code.

5

Refactoring » Example

◼ Consider a method for computing the room
charge for a hotel:

public double getRoomCharge()

{

double roomCharge = 0.0;

... code to compute room charge...

return roomCharge;

}

◼ What other factors might go into computing
the room charge?

6

Refactoring » Example

◼ Of course, to print out a bill for a customer, we also need to include
incidentals and taxes …

public double getRoomCharge()
{

double roomCharge = 0.0;
... code to compute room charge...

// now add the incidentals to roomCharge
... code to add up incidentals ...
// now add the tax for the room to the charge
...several lines of code to compute the tax...
return roomCharge;

}
◼ What’s inelegant about this method now?

❑ 3 sets of calculations in one function. Method does 3 things.

❑ The name is not illustrative of what the method does.

7

Refactoring » Example

◼ Better: Changing the name of the method (for

example, calculateCustomerCharge).

◼ Does this fix the problem?

❑ No, We also need to change the name at all call sites.

❑ We need to update the documentation.

❑ If this method overrides a method in another class, the

other name may need to be changed too. Ditto if this

method implements an interface.

◼ This is known as the Rename Method refactoring.

8

Refactoring » Example

◼ Let’s refactor our getRoomCharge() method.
public double calculateCustomerCharge()
{
double roomCharge = getRoomCharge();
double incidentals = getIncidentals();
double tax = getTax(roomCharge, incidentals);
return roomCharge + incidentals + tax;

}

◼ What have we done?
❑ We defined additional methods to compute incidentals, tax, etc.

❑ In order to do this, we added local variables for the quantities that
are being calculated in the new methods.

❑ Some pre-existing local variables ended up being parameters to the
new method.

❑ The returned value is different from what was returned in the pre-
existing method.

9

Refactoring » Common Refactorings

◼ Rename

❑ Methods, Fields, Packages, Projects, Parameters, or

Local Variables

◼ Encapsulate Field (generate getter and setter)

◼ Pull up a Field or Method (into superclass)

◼ Push down a Field or Method (into subclass)

◼ Extract Method, Local Variable, or Constant from

an Expression

◼ Change Method Signature

10

Refactoring » Renaming a Method Using Eclipse

◼ In a Java view showing methods (e.g.,
the Outline view) select the method to
be renamed.

◼ From the view's pop-up menu, select
Refactor » Rename, or select Refactor »
Rename from the global menu bar
or

◼ In a Java editor, select a reference to
or the declaration of the method to be
renamed.

◼ From the editor's pop-up menu, select
Refactor » Rename, or select Refactor »
Rename from the global menu bar.

◼ This pops up the Rename Method
dialog box.

◼ Click Preview to preview the changes,
or click OK to perform the refactoring.

11

Refactoring » Encapsulating a Field

◼ The Encapsulate Field refactoring can be used to convert a public
instance variable into a private instance variable with accessor
functions.

◼ Example: Inelegant code—

public PublicFieldClass{
public String name ;

}

public OtherClass{
public static void main(String[] args){
PublicFieldClass example = new PublicFieldClass();
example.name = "Joe";
System.out.println("My name is " + example.name);

}
}

12

Refactoring » Encapsulating a Field

◼ After refactoring, we have …

public EncapsulatedFieldClass{
private String name;
public String getName(){

return name;
}
public setName(String newName){

name = newName;
}

}

public OtherClass{
public static void main(String[] args){

EncapsulatedFieldClass example =
new EncapsulatedFieldClass()

example.setName("Joe") ;
System.out.println("My name is " +

example.getName()) ;
}

}

13

Refactoring » Encapsulating a Field Using Eclipse

◼ Select the field in one of the Java views
(e.g., Outline, Package Explorer or
Members view).

◼ From the field's pop-up menu, select
Refactor » Encapsulate Field… , or from the
menu bar, select Refactor » Encapsulate
Field…

◼ Alternatively, in the Java editor, select
the field.

◼ From the menu bar, select Refactor »
Encapsulate Field… , or from the editor's
pop-up menu, select Refactor »
Encapsulate Field…

◼ This pops up the Encapsulate Field dialog.

◼ Type the names of the accessor routines
in the Getter name and Setter name text
fields.

◼ Click Preview to preview the changes or
Click OK to perform refactoring.

14

Refactoring » Pull Up Method

◼ Moves a field or method to a superclass of its declaring class.

◼ Suppose you have the same method—or nearly the same method—in
two different classes in your system. It may be a good idea to centralize
the behavior in a superclass.

public class Employee extends Person {
String getName() {

...
}

}

public class Student extends Person {
String getName() {
...

}
}

15

Refactoring » Pull Up Method

◼ After the Pull up Method refactoring is applied …

public class Person {

String getName() {

...

}

}

16

Refactoring » Pull Up Method Using Eclipse

◼ In a Java view (e.g., Outline,
Package Explorer, Members),
select the members that you
want to pull up.

◼ From the menu bar, select
Refactor » Pull Up or from the
pop-up menu, select Refactor »
Pull Up.

◼ This pops up the Pull up dialog.

◼ Select the methods to pull up
and their new declaring class.
Click Next.

◼ Select the methods to be
removed in the subtypes after
pull up and click Next to review
the changes.

17

Refactoring » Push Down Method

◼ Reverse of Pull up Method.

◼ Moves a set of methods and fields from a

class to its subclasses.

◼ Can be used when some of the subclasses

do not use a method defined in the

superclass.

18

Refactoring » Push Down Method Using Eclipse

◼ In a Java view (e.g.,
Outline, Package Explorer,
Members), select the
members that you want to
push down.

◼ From the menu bar, select
Refactor » Push Down or
from the pop-up menu,
select Refactor » Push Down.

◼ The Push Down dialog will
open.

◼ Click Preview to preview
the changes or click OK to
perform the refactoring.

19

Refactoring » Extracting a Local Variable

◼ An expression that occurs in more than one place

is replaced with a local variable, whose value is

calculated only once.

◼ If a program needs to use the same value in

multiple places, it can be calculated only once and

then used wherever needed.

◼ Advantages

❑ Makes the code more efficient.

❑ Makes the code more readable.

❑ Creates a single point of maintenance for the logic of

computing the expression.

20

Refactoring » Extracting a Local Variable Using Eclipse

◼ In a Java editor, select the
expression that you want to
extract to a local variable.

◼ From the editor's pop-up
menu, select Refactor » Extract
Local Variable or from the
menu bar, select Refactor »
Extract Local Variable.

◼ This will open the Extract Local
Variable dialog box.

◼ Type the name of the variable
in the Variable name text field.

◼ Click Preview to preview the
changes or click OK to
perform the refactoring.

21

Refactoring » Extracting a Method

◼ Creates a new method containing the statements

or expression currently selected and replaces the

selection with a reference to the new method.

◼ Advantages

❑ Code readability

❑ Minimize code duplication

22

Refactoring » Extracting a Method Using Eclipse

◼ In an editor, select a set of
statements or an expression
from a method body.

◼ From the pop-up menu in the
editor, select Refactor »
Extract Method from the menu
bar, select Refactor » Extract
Method.

◼ This opens the Extract
Method dialog box.

◼ Type the method name in the
Method name text field.

◼ In the Access Modifier list,
specify the method's visibility
(public, default, protected, or
private).

◼ Click Preview to preview the
changes or click OK to
perform the refactoring.

23

Refactoring » Change Method Signature

◼ Select the method in a Java view (e.g.
Outline, Package Explorer, Members).

◼ From the menu bar, select Refactor »
Change Method Signature or from the
method's pop-up menu, select
Refactor » Change Method Signature.

◼ This opens the Change Method
Signature dialog box.

◼ Use the Access Modifier drop-down to
control the method's visibility.

◼ Change the method's return type or
name by editing the provided text
fields.

◼ Select one or more parameters and
use the Up and Down buttons to
reorder the parameters (you can see
a signature preview below the
parameter list).

◼ Use the Add button to add a
parameter; you can then edit its type,
name and default value in the table.

◼ Switch to the Exceptions tab to add or

remove thrown exceptions. Click

Preview to preview the changes

24

Other Refactorings Supported by Eclipse

◼ Renaming

❑ a package

❑ a compilation unit

❑ a type

❑ a local variable

❑ method parameters

◼ Extracting

❑ a constant

❑ an interface from a type

◼ Inlining

❑ a local variable

❑ a method

❑ a constant

❑ static members between
types

❑ an instance method to a
component

◼ Converting

❑ a local variable to a field

❑ an anonymous inner class to

a nested class

❑ a nested type to a top level

type

◼ Replacing

❑ references to a type with

references to one of its

supertypes

❑ a single reference to a type

with a reference to one of its

supertypes

❑ an expression with a method

parameter

❑ constructor calls with factory

method invocations

