Module Road Map

Refactoring
= Why Refactoring?
= Examples
* Common Refactorings

Refactoring » WWhat IS Refactoring?

= Refactoring is the process of changing a
software system so that
o the external behavior is not altered, but
o the internal structure is improved.

= Refactoring (http://www.refactoring.com/) Is a
“behavior-preserving transformation.”
o Small changes per transformation
o = less likely to go wrong
o System works after each change

http://www.refactoring.com/

Refactoring » Organizing Java Code

= Eclipse comes with extensive support for
organizing and refactoring Java code

= It IS possible to:
o Generate getters and setters for the fields
o Organize missing import statements
o Move fields, methods, classes
o Rename methods, classes, packages

Refactoring » Why Refactoring?

= Methods might no longer do (only) what their
name suggests.

= Functionality that should be In two different
classes might be in the same class.

= Functionality that should be in one class
might be duplicated in two or more classes.

= Improve the design of existing code.
= Gain a better understanding of the code.

Refactoring » EXample

= Consider a method for computing the room
charge for a hotel:

public double getRoomCharge()
{
double roomCharge = 0.0;
. code to compute room charge...
return roomCharge;

}

= What other factors might go into computing
the room charge?

Refactoring » EXample

= Of course, to print out a bill for a customer, we also need to include
incidentals and taxes ...

public double getRoomCharge()

{
double roomCharge = 0.0;
. code to compute room charge...
// now add the incidentals to roomCharge
... code to add up incidentals ...
// now add the tax for the room to the charge
...several lines of code to compute the tax...
return roomCharge;
}

= What’ s inelegant about this method now?

o 3 sets of calculations in one function. Method does 3 things.
o The name is not illustrative of what the method does.

Refactoring » EXample

= Better: Changing the name of the method (for
example, calculateCustomerCharge).

= Does this fix the problem?
a No, We also need to change the name at all call sites.
o We need to update the documentation.

o If this method overrides a method in another class, the
other name may need to be changed too. Ditto if this
method implements an interface.

= This is known as the Rename Method refactoring.

Refactoring » EXample

= Let’ s refactor our getRoomCharge() method.

public double calculateCustomerCharge()
{
double roomCharge = getRoomCharge();
double incidentals = getlncidentals();
double tax = getTax(roomCharge, incidentals);
return roomCharge + incidentals + tax;

}

= What have we done?

a
a

Q

We defined additional methods to compute incidentals, tax, etc.

In order to do this, we added local variables for the quantities that
are being calculated in the new methods.

Some pre-existing local variables ended up being parameters to the
new method.

The returned value is different from what was returned in the pre-
existing method.

Refactoring » Common Refactorings

= Rename

o Methods, Fields, Packages, Projects, Parameters, or
Local Variables

= Encapsulate Field (generate getter and setter)
= Pull up a Field or Method (into superclass)
= Push down a Field or Method (into subclass)

s Extract Method, Local Variable, or Constant from
an Expression

= Change Method Signature

Refactoring » Renaming a Method Using Eclipse

In a Java view showing methods (e.g., & e -=d
the Outline view) select the methodto - - s-0-a- vec- =, Soes
be renamed. Padage Exglorer My Ty R et I NenCnss ma =
From the view's pop-up menu, select = i B e g
Refactor » Rename, or select Refactor » \
Rename from the global menu bar = "
or e — - “
In a Java editor, select a reference to P ——
or the declaration of the method to be
renamed. New name: | printField
From the editor's pop-up menu, select H.rzzeses
Refactor » Rename, or select Refactor »
Rename from the global menu bar.
This pops up the Rename Method o | e
. ance
dialog box.

Click Preview to preview the changes,
or click OK to perform the refactoring.

TN SERCRITOTITC0 | VOO SPNT

10

Refactoring » ENncapsulating a Field

= The Encapsulate Field refactoring can be used to convert a public

Instance variable into a private instance variable with accessor
functions.

= Example: Inelegant code—

public PublicFieldClass{
public String name ;
}

public OtherClass{
public static void main(String[] args){
PublicFieldClass example = new PublicFieldClass();
example.name = "Joe";
System.out .println("My name is " + example.name);

}
}

11

Refactoring » ENncapsulating a Field

= After refactoring, we have ...

public EncapsulatedFieldClass{
private String name;
public String getName(){
return name;
}

public setName(String newName){
name = newName;
}

}

public OtherClass{
public static void main(String[] args){
EncapsulatedFieldClass example =
new EncapsulatedFieldClass()
example.setName("Joe") ;

System.out .print In("My name is " +
example.getName()) ;

12

Refactoring » Encapsulating a Field Using Eclipse

Select the field in one of the Java views
(e.g., Outline, Package Explorer or
Members view).

From the field's pop-up menu, select
Refactor » Encapsulate Field... , or from the
menu bar, select Refactor » Encapsulate
Field...

Alternatively, in the Java editor, select
the field.

From the menu bar, select Refactor »
Encapsulate Field... , or from the editor's
pop-up menu, select Refactor »
Encapsulate Field...

This pops up the Encapsulate Field dialog.

Type the names of the accessor routines
in the Getter name and Setter name text
fields.

Click Preview to preview the changes or
Click OK to perform refactoring.

[3 Jove Nl o - chone K. BEX|
Fle B2 Soste Refoctr Newgete Sewth Prpa R Winde b
S $0-Q- L. M . & vieg
¥ Sacage Eporer Hewdy YarCat /| WenClass jpay
NN \
\\\\\\ . i
r. . = — =
< Encapsulate Field
Getter name: | Dethame
Setter name: | setiame
Insert new methods after: |refa-:b:nredF‘rintFieId|:| ﬂ

Field access in dedaring dass:

[Generate method comments

{* yse setter and getter 7 keep field reference

Preview = | K | Cancel

13

<. robens Jesacoc Dedlys

101, d varwgs, § e

Jesopon

Ceng Ae e Gererc Ty Aguments

Teas ’

, ErcomalieFe.
T

Corpere A

Repe Wi

Prefesences.

ieabe Seteet iR

Refactoring » Pull Up Method

= Moves a field or method to a superclass of its declaring class.

= Suppose you have the same method—or nearly the same method—in
two different classes in your system. It may be a good idea to centralize
the behavior in a superclass.

public class Employee extends Person {
String getName() {

}
}

public class Student extends Person {
String getName() {

.

14

Refactoring » Pull Up Method

= After the Pull up Method refactoring is applied ...
public class Person {
String getName() {

15

Refactoring » PUll Up Method Using Eclipse

. _ 3 Ve o “Cle Jek
In a Java view (e.g., Outline, e e o s o |
Package Explorer, Members), = ®o%icenftn oo e
select the members that you — XLIE

= 1 5% Pull up

Want to pun up_ : ”[‘\’:r @ ﬁ:ﬁsrx;%mrmmrmnwaﬁrw:m. T Fed)
From the menu bar, select T— —
Refactor » Pull Up or from the e I L T
pop-up menu, select Refactor »
Pull Up.
This pops up the Pull up dialog.
Select the methods to pull up
and their new declaring class.
Click Next.
Select the methods to be Resaweoetas
removed in the subtypes after
pull up and click Next to review —— 1
the changes. '

NewClass refacuredPe®eld) : vod - Epicp

16

Refactoring » Push Down Method

= Reverse of Pull up Method.

s Moves a set of methods and fields from a
class to Its subclasses.

s Can be used when some of the subclasses
do not use a method defined In the
superclass.

17

Refactoring » Push Down Method Using Eclipse

= |n aJava view (e.g., ‘"“’“"‘"""”\. - M .,
Outline, Package Explorer, o ===
MemberS), SeleCt the \ Spedfy actions for members:
members that you want to = — o | eae.
pUSh down_ o - - Add Reguired

s From the menu bar, select
Refactor » Push Down or

from the pop-up menu,
select Refactor » Push Down. L member(s) selected

= The Push Down dialog will

open. oreven> | ok] cance

= Click Preview to preview — e =
the changes or click OK to e ——
perform the refactoring. s

18

Refactoring » EXtracting a Local Variable

= An expression that occurs in more than one place
IS replaced with a local variable, whose value is
calculated only once.

= If a program needs to use the same value In
multiple places, it can be calculated only once and
then used wherever needed.

= Advantages
a Makes the code more efficient.

o Makes the code more readable.

a Creates a single point of maintenance for the logic of
computing the expression.

19

Refactoring » Extracting a Local Variable Using Eclipse

= In a Java editor, select the et — =t
expression that you want to I M8|% 0:8: /U8 -18 718 5:0 50 AL
extract to a local variable. U e— A

= From the editor's pop-up . " i wis v > —
menu, select Refactor » Extract | = Bxract Local Variable
Local Variable or from the Variable name:| GenVar
menu bal’, select Refactor » ¥ Replace all occurrences of the selected expression with references to the local variable
Extract Local Variable. [Dedlare the local variable as ‘final

= This will O_pen the Extract Local Signature Preview: int newVar
Variable dialog box.

= Type the name of the variable
In the Variable name text field. preven> [[ok | cancel

= Click Preview to preview the

changes or click OK to T
perform the refactoring. B e —

_Despton . 3 |72

I Toeloch verabie e Prefeenss

20

Refactoring » EXtracting a Method

= Creates a new method containing the statements
or expression currently selected and replaces the
selection with a reference to the new method.

= Advantages
a Code readabillity
o Minimize code duplication

21

Refactoring » EXtracting a Method Using Eclipse

= In an editor, select a set of e i NI
statements or an expression t-de9:0-8- (586 |8 e = e
from a method body. N e S R
= From the pop-up menu in the S Extract Method
editor, select Refactor » Method name: ||
Extract Method from the menu access modifiers public (~ protected default & private
bar, select Refactor » Extract — Add thrown runtine exceptions to method signature
Method. [~ Generate method comment
= This opens the Extract 8
Method dialog box. e

private int someMethodName ()

= Type the method name in the
Method name text field.

s In the Access Modifier list,

specify the method's visibility [0 | conce
(public, default, protected, or i - ;
private). T e

= Click Preview to preview the
changes or click OK to
perform the refactoring. e

22

Refactoring » Change Method Signature

= Select the method in a Java view (e.g. == =i o s v o o =

-

Outline, Package Explorer, Members). ._| < Change Method Signature
| From the menu bar, select Refactor » .|| Accessmodifier: Return type: Method name:
Change Method Signature or from the public | | void | refactoredPrintField

method's pop-up menu, select —
Refactor » Change Method Signature. — = Detadtvaioe 17 ad

= This opens the Change Method String parameter
Signature dialog box.

= Use the Access Modifier drop-down to
control the method's visibility.

= Change the method's return type or

Edit...

Remove

Ll

name by editing the provided text
fl eldS . Method signature preview:

= Select one or more parameters and
use the Up and Down buttons to

poblic voili refactoredPrintField (String parameter)

reorder the param eters (you can see i Change the signature of the selected method and all its overriding methods.
a signature preview below the
parameter list). [o | cancel

= Use the Add button to add a _ .
parameter; you can then edit iis type, s e

name and default value in the table. = Switch to the Exceptions tab to add or
remove thrown exceptions. Click
Preview to preview the changes

23

Other Refactorings Supported by Eclipse

= Renaming

o 0o 0O O

Q

a package

a compilation unit
a type

a local variable
method parameters

= Extracting

Q

Q

a constant
an interface from a type

= Inlining

Q

a
Q
a

a local variable
a method
a constant

static members between

types
an instance method to a
component

24

= Converting
o a local variable to a field

o an anonymous inner class to
a nested class

o a nested type to a top level
type
= Replacing
o references to a type with

references to one of its
supertypes

o a single reference to a type
with a reference to one of its
supertypes

o an expression with a method
parameter

o constructor calls with factory
method invocations

