
 

Coupling and Cohesion 

Module Coupling 

In software engineering, the coupling is the degree of interdependence between software modules. 

Two modules that are tightly coupled are strongly dependent on each other. However, two modules 

that are loosely coupled are not dependent on each other. Uncoupled modules have no 

interdependence at all within them. 

The various types of coupling techniques are shown in fig: 

 

A good design is the one that has low coupling. Coupling is measured by the number of relations 

between the modules. That is, the coupling increases as the number of calls between modules increase 

or the amount of shared data is large. Thus, it can be said that a design with high coupling will have 

more errors. 

 

 

 

 



Types of Module Coupling 

 

1. No Direct Coupling: There is no direct coupling between M1 and M2. 

 

In this case, modules are subordinates to different modules. Therefore, no direct coupling. 

2. Data Coupling: When data of one module is passed to another module, this is called data coupling. 



 

3. Stamp Coupling: Two modules are stamp coupled if they communicate using composite data items 

such as structure, objects, etc. When the module passes non-global data structure or entire structure to 

another module, they are said to be stamp coupled. For example, passing structure variable in C or 

object in C++ language to a module. 

4. Control Coupling: Control Coupling exists among two modules if data from one module is used to 

direct the structure of instruction execution in another. 

5. External Coupling: External Coupling arises when two modules share an externally imposed data 

format, communication protocols, or device interface. This is related to communication to external 

tools and devices. 

6. Common Coupling: Two modules are common coupled if they share information through some 

global data items. 

 

7. Content Coupling: Content Coupling exists among two modules if they share code, e.g., a branch 

from one module into another module. 



 

Module Cohesion 

In computer programming, cohesion defines to the degree to which the elements of a module belong 

together. Thus, cohesion measures the strength of relationships between pieces of functionality within 

a given module. For example, in highly cohesive systems, functionality is strongly related. 

Cohesion is an ordinal type of measurement and is generally described as "high cohesion" or "low 

cohesion." 

 

 

 

 

 

 

 

 



Types of Modules Cohesion 

 

1. Functional Cohesion: Functional Cohesion is said to exist if the different elements of a 

module, cooperate to achieve a single function. 

2. Sequential Cohesion: A module is said to possess sequential cohesion if the element of a 

module form the components of the sequence, where the output from one component of the 

sequence is input to the next. 

3. Communicational Cohesion: A module is said to have communicational cohesion, if all tasks 

of the module refer to or update the same data structure, e.g., the set of functions defined on an 

array or a stack. 

4. Procedural Cohesion: A module is said to be procedural cohesion if the set of purpose of the 

module are all parts of a procedure in which particular sequence of steps has to be carried out 

for achieving a goal, e.g., the algorithm for decoding a message. 



5. Temporal Cohesion: When a module includes functions that are associated by the fact that all 

the methods must be executed in the same time, the module is said to exhibit temporal 

cohesion. 

6. Logical Cohesion: A module is said to be logically cohesive if all the elements of the module 

perform a similar operation. For example Error handling, data input and data output, etc. 

7. Coincidental Cohesion: A module is said to have coincidental cohesion if it performs a set of 

tasks that are associated with each other very loosely, if at all. 

 

Differentiate between Coupling and Cohesion 

Coupling Cohesion 

Coupling is also called Inter-Module 

Binding. 

Cohesion is also called Intra-Module Binding. 

Coupling shows the relationships 

between modules. 

Cohesion shows the relationship within the 

module. 

Coupling shows the 

relative independence between the 

modules. 

Cohesion shows the module's 

relative functional strength. 

While creating, you should aim for low 

coupling, i.e., dependency among 

modules should be less. 

While creating you should aim for high cohesion, 

i.e., a cohesive component/ module focuses on a 

single function (i.e., single-mindedness) with little 

interaction with other modules of the system. 

In coupling, modules are linked to the 

other modules. 

In cohesion, the module focuses on a single thing. 

 

 


