
Sorting

Sorting

Sorting is a process of ordering or placing a list of elements from a collection in some kind of

order. It is nothing but storage of data in sorted order. Sorting can be done in ascending and

descending order. It arranges the data in a sequence which makes searching easier.

For example: The below list of characters is sorted in increasing order of their ASCII values. That

is, the character with lesser ASCII value will be placed first than the character with higher ASCII

value.

d a t a s t r u c t u r e a a c d e r r s t t t u u

Input Output

Categories of Sorting

The techniques of sorting can be divided into two categories. These are:

 Internal Sorting

 External Sorting

Internal Sorting: If all the data that is to be sorted can be adjusted at a time in the main memory,

the internal sorting method is being performed.

External Sorting: When the data that is to be sorted cannot be accommodated in the memory at

the same time and some has to be kept in auxiliary memory such as hard disk, floppy disk, magnetic

tapes etc, then external sorting methods are performed.

Stable and Not Stable Sorting

If a sorting algorithm, after sorting the contents, does not change the sequence of similar content

in which they appear, it is called stable sorting.

If a sorting algorithm, after sorting the contents, changes the sequence of similar content in which

they appear, it is called unstable sorting.

Adaptive and Non-Adaptive Sorting Algorithm

A sorting algorithm is said to be adaptive, if it takes advantage of already 'sorted' elements in the

list that is to be sorted. That is, while sorting if the source list has some element already sorted,

adaptive algorithms will take this into account and will try not to re-order them.

A non-adaptive algorithm is one which does not take into account the elements which are already

sorted. They try to force every single element to be re-ordered to confirm their sortedness.

Important Terms

Some terms are generally coined while discussing sorting techniques, here is a brief introduction

to them −

Increasing Order

A sequence of values is said to be in increasing order, if the successive element is greater than

the previous one. For example, 1, 3, 4, 6, 8, 9 are in increasing order, as every next element is

greater than the previous element.

Decreasing Order

A sequence of values is said to be in decreasing order, if the successive element is less than the

current one. For example, 9, 8, 6, 4, 3, 1 are in decreasing order, as every next element is less than

the previous element.

Non-Increasing Order

A sequence of values is said to be in non-increasing order, if the successive element is less than

or equal to its previous element in the sequence. This order occurs when the sequence contains

duplicate values. For example, 9, 8, 6, 3, 3, 1 are in non-increasing order, as every next element

is less than or equal to (in case of 3) but not greater than any previous element.

Non-Decreasing Order

A sequence of values is said to be in non-decreasing order, if the successive element is greater

than or equal to its previous element in the sequence. This order occurs when the sequence

contains duplicate values. For example, 1, 3, 3, 6, 8, 9 are in non-decreasing order, as every next

element is greater than or equal to (in case of 3) but not less than the previous one.

The Bubble Sort

The bubble sort makes multiple passes through a list. It compares adjacent items and exchanges

those that are out of order. Each pass through the list places the next largest value in its proper

place. In essence, each item “bubbles” up to the location where it belongs.

Example. Sort {5, 1, 12, -5, 16} using bubble sort.

Table 1: Comparisons for Each Pass of Bubble Sort

Pass Comparisons

1 n−1

2 n−2

3 n−3

… …

n−1 1

Algorithm for bubble sort

1. Input array A[1….n]

2. for (i = 0; i<= n – 1; i++)

 {

 for (j= 0; j<=n - i – 1; j++)

 {

 if (A[j] > A[j+1]) {

 temp = A[j];

 A[j] = A[j+1];

 A[j+1] = temp;

 }

 }

 }

3. Output: Sorted list

The Selection Sort

In this method, at first we select the smallest data of the list. After selecting, we place the smallest

data in the first position and the data in first position is placed in the position where the smallest

data was. After that we consider the list except the data in the first position. Again we select the

(second) smallest data from the list and place it in the second position of the list and place the data

in the in the second position, in the position where the second smallest data was. By repeating the

process, we can sort the whole list.

Example. Sort {5, 1, 12, -5, 16, 2, 12, 14} using selection sort.

Algorithm for selection sort

1. Input array A[1…..n]

2. for(i=1; i<=n-1; i++)

 {

 small_index=i;

 for(j=i+1; j<=n; j++)

 {

 if(A[j] < A[small_index])

 small_index=j;

 }

 temp=A[i];

 A[i]=A[small_index];

 A[small_index]=temp;

 }

3. Output: Sorted list

The Insertion Sort

 It always maintains a sorted sublist in the lower positions of the list. Each new item is then

“inserted” back into the previous sublist such that the sorted sublist is one item larger. Figure

shows the insertion sorting process. The shaded items represent the ordered sublists as the

algorithm makes each pass. We can derive simple steps by which we can achieve insertion sort.

Algorithm for insertion sort

1. Input array A[1….n]

2. for (i = 1 ; i <= n - 1; i++) {

 j = i;

 while (j > 0 && a[j-1] > a[j]) {

 temp = a[j];

 a[j] = a[j-1];

 a[j-1] = temp;

 j--;

 }

 }

3. Output: Sorted list.

The Merge Sort

 Merge sort is a recursive algorithm that continually splits a list in half. If the list is empty or has

one item, it is sorted by definition (the base case). If the list has more than one item, we split the

list and recursively invoke a merge sort on both halves. Once the two halves are sorted, the

fundamental operation, called a merge, is performed. Merging is the process of taking two smaller

sorted lists and combining them together into a single, sorted, new list.

Figure 1: Splitting the List in a Merge Sort

Figure 2: Lists as They Are Merged Together

Divide and Conquer Method

In divide and conquer approach, the problem in hand, is divided into smaller sub-problems and

then each problem is solved independently. When we keep on dividing the subproblems into even

smaller sub-problems, we may eventually reach a stage where no more division is possible. Those

"atomic" smallest possible sub-problem (fractions) are solved. The solution of all sub-problems

is finally merged in order to obtain the solution of an original problem.

Broadly, we can understand divide-and-conquer approach in a three-step process.

Divide/Break

This step involves breaking the problem into smaller sub-problems. Sub-problems should

represent a part of the original problem. This step generally takes a recursive approach to divide

the problem until no sub-problem is further divisible. At this stage, sub-problems become atomic

in nature but still represent some part of the actual problem.

Conquer/Solve

This step receives a lot of smaller sub-problems to be solved. Generally, at this level, the problems

are considered 'solved' on their own.

Merge/Combine

When the smaller sub-problems are solved, this stage recursively combines them until they

formulate a solution of the original problem. This algorithmic approach works recursively and

conquer & merge steps works so close that they appear as one.

