
Linked List

 It is a list or collection of data items that can be stored in scattered locations (positions) in

memory.

 To store data in scattered locations in memory we have to make link between one data item

to another. So, each data item or element must have two parts: one is data part another is

link (pointer) part.

 Each data item of a linked list is called a node.

 Data part contains (holds) actual data (information) and the link part points to the next node

of the list.

 To locate the list an external pointer is used that pints the first node of the list. The link part

of the last node will not point to any node. So, it will be null. This type of list is called

linear (one way) linked list or simply linked list.

Figure 1: A single node

Figure 2: Graphical representation of a linear linked list

Node declaration and store data in a node

1. Node declaration

 struct node

 {

 int data;

 node *next;

 };

2. Data store:

 node *nptr;

 nptr -> data = 20;

 nptr -> next = NULL;

Create a new node

1. Node declaration

 struct node

 {

 int data;

 node *next;

 };

2. Declare variables (pointer type) that point to the node:

 node *nptr;

3. Allocate memory for new node:

 nptr = new(node);

4. Insert node value:

 nptr -> data = 55;

 nptr -> next = NULL;

Algorithm (pseudo code) to create a linked list

1. Declare node and pointers (list, tptr, nptr):

 i. struct node

 {

 int data;

 node *next;

 };

 ii. node *list, *tptr, *nptr;

2. Create an empty list:

 list = NULL;

3. Create a new node:

 nptr = new(node);

 nptr -> data = item;

 nptr -> next = NULL;

4. Make link between the linked list and the new node:

 if (list==NULL)

 {

 list = nptr;

 tptr = nptr;

 }

 else

 {

 tptr -> next = nptr;

 tptr = nptr;

 }

4. Output linked list.

Note: Step 3 and 4 will be repeated again and again if two or more nodes are to be added in the

list.

Comments: Here, nptr is a pointer that points to a new node, The tptr is the pointer that points

the last node, which has been already added. item is a variable using which we shall enter data to

the new node.

Figure 3: Addition of nodes to a linked list (pictorial view)

Algorithm (pseudo code) to search a node from a linked list

1. Declare node and tptr

2. Input the values to be located:

 item = 51;

3. Search the item:

 tptr = list;

 while (tptr->data != item or tptr != NULL)

 {

 tptr = tptr->next;

 }

4. Output:

 if (tptr -> data = item)

 print “FOUND”

 else print “NOT FOUND”

Algorithm (pseudo code) to insert a node into a linked list

[Here, we shall consider insertion after the first node or before the last node in an ascending list]

1. Declare node and pointers (list, tptr, nptr)

2. Input linked list (we have to use an existing list)

3. Create a new node

 nptr = new(node);

 nptr -> data = item;

 nptr -> next = NULL;

4. Locate the appropriate position for the new node:

 tptr = list;

 while (tptr -> next -> data < nptr -> data)

 {

 tptr = tptr -> next;

 }

5. Insert new node at appropriate position

 nptr -> next = tptr -> next;

 tptr -> next = nptr;

6. Updated linked list.

Algorithm (pseudo code) to delete a node from a linked list

[Here, we shall not consider deletion process of the first node and the last node in the list]

1. Declare node and pointers (list, tptr, pptr)

2. Input linked list and the item (that is to be deleted)

3. Search the item to be deleted in the list:

 tptr = list;

 while (tptr -> data !=item)

 {

 pptr =tptr;

 tptr = tptr -> next;

 }

4. Delete the node

 pptr -> next = tptr -> next;

 delete (tptr);

5. Output: Updated linked lists.

Doubly Linked List

 A doubly or two way linked list is a list where each node has three parts.

 One is link or pointer to the previous (backward) node and one is data part to hold the

data and another is link or pointer to the following (forward) node.

 There is an external pointer to the first node of the list.

 Doubly linked list is also called two-way linked list.

Figure 4: Graphical representation of a doubly linked list

Declare a node of a doubly linked list

1. Node declaration

 struct node

 {

 node *back

 int data;

 node *next;

 };

Create a node

 struct node

 {

 node *back;

 int data;

 node *next;

 };

 node *nptr;

 nptr = new(node);

 nptr -> back = NULL;

 nptr -> data = item;

 nptr -> next = NULL;

Algorithm (pseudo code) to create a doubly linked list

1. Declare node and pointers

 a. struct node

 {

 node *back;

 int data;

 node *next;

 };

 b. node *list, *tptr;

2. Create an empty list:

 list = NULL;

3. Create a new node:

 nptr = new(node);

 nptr -> back = NULL;

 nptr -> data = item;

 nptr -> next = NULL;

4. Make link between the last node of the list and the new node:

 if (list==NULL)

 {

 list = nptr;

 tptr = nptr;

 }

 else

 {

 tptr -> next = nptr;

 nptr -> back = tptr;

 tptr = nptr;

 }

5. Output: a doubly linked list.

Circular Linked List

 A circular linked list is a list where each node has two parts.

 One is data part to hold the data and another is link or pointer part that points the next

node and the last node’s pointer points the first node of the list.

 Like other linked list there is an external pointer to the list to pint the first node.

Figure 5: Pictorial view of a circular linked list (a circular diagram)

Figure 6: A circular linked list (linear diagram)

Algorithm (pseudo code) to create a circular linked list

1. Declare node and pointers (list, tptr, nptr)

2. Create an empty list:

 list = NULL;

3. Create a new node with data:

 nptr = new(node);

 nptr -> data = item;

 nptr -> next = NULL;

4. Make link between the new node and the link list:

 if (list==NULL)

 {

 list = nptr;

 nptr -> next = list;

 tptr = nptr;

 }

 else

 {

 tptr -> next = nptr;

 nptr -> next = list;

 tptr = nptr;

 }

5. Output: a circular linked list.

Differences between array and linked list

 An array is the data structure that contains a collection of similar type data elements

whereas the Linked list is considered as non-primitive data structure contains a collection

of unordered linked elements known as nodes.

 Random access is possible in array but in linked list, random access is not allowed

 Accessing an element in an array is fast, while Linked list takes linear time, so it is quite

a bit slower.

 Operations like insertion and deletion in arrays consume a lot of time. On the other hand,

the performance of these operations in Linked lists is fast.

 Arrays are of fixed size. In contrast, Linked lists are dynamic and flexible and can expand

and contract its size.

 In an array, memory is assigned during compile time while in a Linked list it is allocated

during execution or runtime.

 Elements are stored consecutively in arrays whereas it is stored randomly in Linked lists.

 The requirement of memory is less due to actual data being stored within the index in the

array. As against, there is a need for more memory in Linked Lists due to storage of

additional next and previous referencing elements.

 In addition memory utilization is inefficient in the array. Conversely, memory utilization

is efficient in the linked list.

