
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

OS-2

3.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

What is Process!

A process is a program in execution. Process is not as same as program

code but a lot more than it.

A process is an 'active' entity as opposed to program which is considered to

be a 'passive' entity.

Process memory is divided into four sections for efficient working :

The Text section is made up of the compiled program code, read in from

non-volatile storage when the program is launched.

The Data section is made up the global and static variables, allocated and

initialized prior to executing the main.

The Heap is used for the dynamic memory allocation, and is managed via

calls to new, delete, malloc, free, etc.

The Stack is used for local variables. Space on the stack is reserved for

local variables when they are declared.

3.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process in Memory

3.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process State

As a process executes, it changes state

new: The process is being created

running: Instructions are being executed

waiting: The process is waiting for some event to occur(such

as an I/O completion or reception of a signal).

ready: The process is waiting to be assigned to a processor

terminated: The process has finished execution

3.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Diagram of Process State

3.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Control Block (PCB)

There is a Process Control Block for each

process, enclosing all the information

about the process. It is a data structure,

which contains the following

Process state – running, waiting, etc

Program counter – location of

instruction to next execute

CPU registers – contents of all process-

centric registers

CPU scheduling information- priorities,

scheduling queue pointers

Memory-management information –

memory allocated to the process

Accounting information – CPU used,

clock time elapsed since start, time

limits

I/O status information – I/O devices

allocated to process, list of open files

3.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

CPU Switch From Process to Process

3.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

What is Process Scheduling?

The act of determining which process is in the ready state, and should be moved

to the running state is known as Process Scheduling.

Scheduling fell into one of the two general categories:

Non Pre-emptive Scheduling: When the currently executing process gives

up the CPU voluntarily.

Pre-emptive Scheduling: When the operating system decides to favour

another process, pre-empting the currently executing process.

3.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Scheduling

Maximize CPU use, quickly switch processes onto CPU for

time sharing

Process scheduler selects among available processes for

next execution on CPU

Maintains scheduling queues of processes

Job queue – set of all processes in the system

Ready queue – set of all processes residing in main

memory, ready and waiting to execute

Device queues – set of processes waiting for an I/O device

Processes migrate among the various queues

3.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Scheduling

A new process is initially put in the Ready queue. It waits in the ready

queue until it is selected for execution(or dispatched). Once the process is

assigned to the CPU and is executing, one of the following several events

can occur:

The process could issue an I/O request, and then be placed in the I/O

queue.

The process could create a new subprocess and wait for its termination.

The process could be removed forcibly from the CPU, as a result of an

interrupt, and be put back in the ready queue.

In the first two cases, the process eventually switches from the waiting state to

the ready state, and is then put back in the ready queue. A process continues

this cycle until it terminates, at which time it is removed from all queues and

has its PCB and resources deallocated.

3.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Representation of Process Scheduling

Queueing diagram represents queues, resources, flows

3.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schedulers

Short-term scheduler (or CPU scheduler) – selects which process should

be executed next and allocates CPU

Sometimes the only scheduler in a system

Short-term scheduler is invoked frequently (milliseconds) (must be

fast)

Long-term scheduler (or job scheduler) – selects which processes should

be brought into the ready queue

Long-term scheduler is invoked infrequently (seconds, minutes)

(may be slow)

The long-term scheduler controls the degree of multiprogramming

Processes can be described as either:

I/O-bound process – spends more time doing I/O than computations,

many short CPU bursts

CPU-bound process – spends more time doing computations; few very

long CPU bursts

Long-term scheduler strives for good process mix

3.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication

Processes within a system may be independent or cooperating

Cooperating process can affect or be affected by other processes,

including sharing data

Reasons for cooperating processes:

Information sharing

Computation speedup

Modularity

Convenience

Cooperating processes need interprocess communication (IPC)

Two models of IPC

Shared memory

Message passing

3.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Communications Models

(a) Message passing. (b) shared memory.

3.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Cooperating Processes

Independent process cannot affect or be affected by the execution

of another process

Cooperating process can affect or be affected by the execution of

another process

Advantages of process cooperation

Information sharing

Computation speed-up

Modularity

Convenience

3.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication – Shared Memory

An area of memory shared among the processes that wish
to communicate

The communication is under the control of the users
processes not the operating system.

Major issues is to provide mechanism that will allow the
user processes to synchronize their actions when they
access shared memory.

Synchronization is discussed in great details in Chapter 5.

3.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication – Message Passing

Mechanism for processes to communicate and to synchronize
their actions

Message system – processes communicate with each other
without resorting to shared variables

IPC facility provides two operations:

send(message)

receive(message)

The message size is either fixed or variable

3.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Message Passing (Cont.)

If processes P and Q wish to communicate, they need to:

Establish a communication link between them

Exchange messages via send/receive

Implementation of communication link

Physical:

 Shared memory

 Hardware bus

 Network

Logical:

 Direct or indirect

 Synchronous or asynchronous

 Automatic or explicit buffering

3.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Classical IPC Problems

Dining Philosophers Problem

Total 5 philosophers are seated in a round table. On left and right to each

philosophers is one fork/chopstick placed.

When a philosopher thinks, he does not interact with his others.

From time to time, a philosopher gets hungry and tries to pick up the two

forks that are closest to him (the forks that are between him and his left and

right neighbors).

A philosopher may pick up only one fork at a time. Obviously, he cannot

pick up a fork that is already in the hand of a neighbor.

When a hungry philosopher has both his forks at the same time, he eats

without releasing his forks.

When he is finished eating, he puts down both of his forks and starts

thinking again.

The problem is to design a protocol to satisfy the liveness condition: any

philosopher who tries to EAT, eventually does.

3.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Cont…

3.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Cont…

Readers Writer Problem

Readers writer problem is another example of a classic synchronization

problem.

The Problem Statement

There is a shared resource which should be accessed by multiple processes.

There are two types of processes in this context. They are reader and writer.

Any number of readers can read from the shared resource simultaneously, but

only one writer can write to the shared resource. When a writer is writing data

to the resource, no other process can access the resource. A writer cannot

write to the resource if there are non zero number of readers accessing the

resource at that time.

