Linux Shell Scripts



What is Shell Script ?

We have seen some basic shell commands, it's time to
move on to scripts.
There are two ways of writing shell programs.
You can type a sequence of commands and allow the
shell to execute them interactively.
You can store those commands in a file that you can
then invoke as a program. This is known as Shell
Script.
We will use bash shell assuming that the shell has been
installed as /bin/sh and that it is the default shell for
your login.



Why Shell Script ?

Shell script can take input from user, file and output
them on screen.

Useful to create own commands.

Save lots of time.

To automate some task of day today life.

System administration part can be also automated.



How to write and execute ?

Use any editor to write shell script.
The extension is .sh.
After writing shell script set execute permission for your
script.
chmod +x script_name
Execute your script
Jscript_name



Shell script format

Every script starts with the line

#!/bin/bash
This indicates that the script should be run in the bash
shell regardless of which interactive shell the user has
chosen.
This is very important, since the syntax of different
shells can vary greatly.
# is used as the comment character.
A word beginning with # causes that word and all
remaining characters on that line to be ignored.



A sample shell script

#1/bin/bash

echo "Hello User"

echo "See the files in current directory"
[s



Variables

In Linux (Shell), there are two types of variable:
System variables - created and maintained by Linux
itself.
echo sUSER
echo $PATH
User defined variables - created and maintained by
user.
All variables are considered and stored as strings, even
when they are assigned numeric values.
Variables are case sensitive.



Variables

When assigning a value to a variable, just use the name.

No spaces on either side of the equals sign.
var_name=value

Within the shell we can access the contents of a variable

by preceding its name with a $.

myname=A [ use quotes if the value contains spaces ]
myos=Linux

text =1+2

echo Your name:smyname [ A ]

echo Your os:$myos [ Linux]

echo stext [ 1+2 ]



Variables

If you enclose a $variable expression in double quotes,
it's replaced with its value when the line is executed.

If you enclose it in single quotes, no substitution takes
place.You can also remove the special meaning of the $
symbol by prefacing it with a \.

myvar="Hello”

echo smyvar [ Hello]
echo “smyvar” [ Hello]
echo 'smyvar’[ smyvar]
echo \smyvar [ smyvar]



Read

To read user input from keyboard and store it into a
variable use read vara,varz,.....varn

#!/bin/bash

echo -n "Enter your name:”
read name

echo -n "Enter your student no:”
read stdno

echo "Your Name:$name”

echo "Your Age:$stdno”



Shell Arithmetic

The expr command evaluates its arguments as an
expression.
It is commonly used for simple arithmetic operations.

#!/bin/bash
expri+i1
expri-i
expri\*1
expri/1

va r="expri+1
X=1
X='expr$x+1’



Shell Arith

Expression Evaluation Description

exprl | expr2 exprl if exprl is nonzero, otherwise expr?2
exprl & expr2 Zero if either expression is zero, otherwise exprl
exprl = expr?2 Equal

exprl > expr2 Greater than

exprl == expr?2 Greater than or equal to

exprl < expr2 Less than

Exprl <= exXpra Less than or equal to

exprl l= expr? Not equal

exprl + expr2 Addition

exprl - expr2 Subtraction

exprl * expr2 Multiplication

exprl / expr2 [nteger division

exprl % expr?2 Integer modulo



If-Else

If [ conditiongi ]; then

statementa
elif [ conditionz ]; then

statement2
else

statement3
fi
It is must to put spaces between the [ braces and the
condition being checked.
If you prefer putting then on the same line as if, you
must add a semicolon to separate the test from the
then.



If-Else

String Comparison Result

stringl = string2 True if the strings are equal.

stringl != string2 True if the strings are not equal.

-n string True if the string is not null.

-Z string True if the string is null (an empty string).

Arithmetic Comparison Result

expressionl -eg expression?2 True if the expressions are equal.

expressionl -ne expression? True if the expressions are not equal.

expressionl -gt expression? True if expressionl is greater than expression?
expressionl -ge expression? True if expressionl is greater than or equal to

expression?2
expressionl -1t expression?2 True if expressionl isless than expression?2

expressionl -le expression?2 True if expressionl is less than or equal to
expression2

| expressicn True if the expression is false, and vice versa.



If-Else

File Conditional Result
-d file True if the file is a directory.
-e file True if the file exists. Note that, historically, the -e option has not

been portable, so -f is usually used.

-f file True if the file is a regular file.

-g file True if set-group-id is set on file.
-r file True if the file is readable.

-g file True if the file has nonzero size.

-u file True if set-user-id is set on £ile,
-w file True if the file is writable.

-x file True if the file is executable.



If-Else

#!/bin/bash
echo "Enter first number "
read numa
echo "Enter second number"
read numz2
if [ $numa -gt $num2 ] ; then
echo "$numa is greater than $num2"
elif [ $numa -lt snum2 ] ; then
echo "$numa is less than $snum2"
else
echo "$numzi and $numz2 are equal"

fi



Case

case svarin
condition1) statement ;;
condition2) statement ;;
*) statement3

esac

Notice that each pattern line is terminated with double
semicolons ;; .

You can put multiple statements between each pattern
and the next, so a double semicolon is needed to mark
where one statement ends and the next pattern begins.



Case

#1/bin/sh
echo "Is it morning? Please answer yes or no”
read timeofday
case “stimeofday” in

yes) echo “"Good Morning”;;

no) echo "Good Afternoon”;;

y) echo "Good Morning”;;

n) echo "“Good Afternoon”;;

*) echo “Sorry, answer not recognized”;;
esac



Case

#!/bin/sh
echo "Is it morning? Please answer yes or no”
read timeofday
case “stimeofday” in
yes |y |Yes|YES ) echo "Good Morning”;;
n*|N*) echo "Good Afternoon”;;
*) echo "Sorry, answer not recognized”;;
esac



Command Line arguments

Command line arguments can be passed to the shell
scripts. There exists a number of built in variables
$* - command line arguments
$# - number of arguments
$n - nth argumentin $*
J/script_name arg1 argz .... argn



For

for variable in list
do

statement
done

for (( expri; expr2; expr3))
do
statement

done



For

[1] [2]
#!/bin/bash #!/bin/bash
echo "the number of argsis foriin 'ls’
s#H" do
a=1 echo $i
foriins* done
do
echo "The sa No arg is $1" [3]
a='exprsa+1 for((i=0;i<=50;i++))
done do
echo $i

done



While

while conditiondo  #!/bin/bash
statements password="abc"

done echo "Enter password"
read pass
while [ $pass != spassword ]
do
echo "Wrong Password, Try again"
read pass
done
echo "Write Password"



Until

until conditiondo  #!/bin/bash
statements password="abc"

done echo "Enter password"
read pass
until [ $pass = $password ]
do
echo "Wrong Password, Try again"
read pass
done
echo "Write Password"



Functions

Functions can be defined in the shell and it is very useful
to structure the code.

To define a shell function simply write its name followed
by empty parentheses and enclose the statements in

braces.
function_name () {
statements

f

Function must be defined before one can invoke it.



Functions

#1/bin/sh
foo() {

echo "“Function foo is executing”

f

echo "script starting”

foo

echo "script ending”

output
script starting

Function foo is executing
script ending



Functions

o #1/bin/bash
When a function is invoked, showarg()
the parameters to the {
script [$*, $#, $1, $2] and a=1
so on are replaced by the foriinsg*
parameters to the function. do
When the function finishes, echo “The sa No arg is $i"
they are restored to their a='exprsa+1
previous values. } done
echo "Listing start"
showarg $*

echo "Total:$#"
echo "Listing End"



Functions

Functions can return numeric values using the return

command.

Functions can also return strings by the following ways.
[1]

fOf var="123"; }

f

echo svar

[2]
JOf echo "123";}
result="$(f)"



Functions

#1/bin/sh if yes_or_no "$1”

yes_or_no() then

{ echo "Hi $1, nice name”
echo "Is your name $*?"  else
echo "Enter yes or no:" echo "Never mind”
read x fi

case "$x”in
y | yes ) returno;;
n|no)returna;;
esac

f



Functions

Be careful :
Function calling can be recursive.

J0
{
statements

f
}

f

The parameter must be passed every time a function
is invoked either from main or from any other
functions.



Thanks



	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31

