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Preface

Cloud computing has become a great solution for providing a flexible, on-demand,
and dynamically scalable computing infrastructure for many applications. Cloud
computing also presents a significant technology trends, and it is already obvious
that it is reshaping information technology processes and the I'T marketplace.

This Handbook is a carefully edited book — contributors are 65 worldwide experts
in the field of cloud computing and their applications. The Handbook Advisory
Board, comprised of nine researchers and practitioners from academia and industry,
helped in reshaping the Handbook and selecting the right topics and creative and
knowledgeable contributors. The scope of the book includes leading-edge cloud
computing technologies, systems, and architectures; cloud computing services; and
a variety of cloud computing applications.

The Handbook comprises four parts, which consist of 26 chapters. The first part
on Technologies and Systems includes articles dealing with cloud computing tech-
nologies, storage and fault tolerant strategies in cloud computing, workflows, grid
computing technologies, and the role of networks in cloud computing.

The second part on Architectures focuses on articles on several specific architec-
tural concepts applied in cloud computing, including enterprise knowledge clouds,
high-performance computing clouds, clouds with vertical load distribution, and
peer-to-peer based clouds.

The third part on Services consists of articles on various issues relating to cloud
services, including types of services, service scalability, scientific services, and
dynamic collaborative services.

The forth part on Applications describes various cloud computing applications
from enterprise knowledge clouds, scientific and statistical computing, scientific
data management, to medical applications.

With the dramatic growth of cloud computing technologies, platforms and ser-
vices, this Handbook can be the definitive resource for persons working in this field
as researchers, scientists, programmers, engineers, and users. The book is intended
for a wide variety of people including academicians, designers, developers, edu-
cators, engineers, practitioners, researchers, and graduate students. This book can
also be beneficial for business managers, entrepreneurs, and investors. The book
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can have a great potential to be adopted as a textbook in current and new courses on
Cloud Computing.
The main features of this Handbook can be summarized as:

1. The Handbook describes and evaluates the current state-of-the-art in a new field
of cloud computing.

2. Italso presents current systems, services, and main players in this explosive field.

3. Contributors to the Handbook are the leading researchers from academia and
practitioners from industry.

We would like to thank the authors for their contributions. Without their expertise
and effort, this Handbook would never come to fruition. Springer editors and staff
also deserve our sincere recognition for their support throughout the project.

Boca Raton, Florida Borko Furht
Armando Escalante
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Chapter 1
Cloud Computing Fundamentals

Borko Furht

1.1 Introduction

In the introductory chapter we define the concept of cloud computing and cloud
services, and we introduce layers and types of cloud computing. We discuss the
differences between cloud computing and cloud services. New technologies that
enabled cloud computing are presented next. We also discuss cloud computing
features, standards, and security issues. We introduce the key cloud computing plat-
forms, their vendors, and their offerings. We discuss cloud computing challenges
and the future of cloud computing.

Cloud computing can be defined as a new style of computing in which dynam-
ically scalable and often virtualized resources are provided as a services over the
Internet. Cloud computing has become a significant technology trend, and many
experts expect that cloud computing will reshape information technology (IT) pro-
cesses and the IT marketplace. With the cloud computing technology, users use
a variety of devices, including PCs, laptops, smartphones, and PDAs to access
programs, storage, and application-development platforms over the Internet, via ser-
vices offered by cloud computing providers. Advantages of the cloud computing
technology include cost savings, high availability, and easy scalability.

Figure 1.1, adapted from Voas and Zhang (2009), shows six phases of computing
paradigms, from dummy terminals/mainframes, to PCs, networking computing, to
grid and cloud computing.

In phase 1, many users shared powerful mainframes using dummy terminals.
In phase 2, stand-alone PCs became powerful enough to meet the majority of
users’ needs. In phase 3, PCs, laptops, and servers were connected together through
local networks to share resources and increase performance. In phase 4, local net-
works were connected to other local networks forming a global network such as
the Internet to utilize remote applications and resources. In phase 5, grid comput-
ing provided shared computing power and storage through a distributed computing

B. Furht (=)

Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic
University, Boca Raton, FL, USA

e-mail: bfurht@fau.edu

B. Furht, A. Escalante (eds.), Handbook of Cloud Computing, 3
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Phases

1. Mainframe [ —
Computing N\

Mainframe

2. PC
Computing

3. Network
Computing

4. Internet
Computing

5. Grid
Computing

6. Cloud
Computing

‘

Fig. 1.1 Six computing paradigms — from mainframe computing to Internet computing, to grid
computing and cloud computing (adapted from Voas and Zhang (2009))

system. In phase 6, cloud computing further provides shared resources on the
Internet in a scalable and simple way.

Comparing these six computing paradigms, it looks like that cloud computing
is a return to the original mainframe computing paradigm. However, these two
paradigms have several important differences. Mainframe computing offers finite
computing power, while cloud computing provides almost infinite power and capac-
ity. In addition, in mainframe computing dummy terminals acted as user interface
devices, while in cloud computing powerful PCs can provide local computing power
and cashing support.

1.1.1 Layers of Cloud Computing

Cloud computing can be viewed as a collection of services, which can be presented
as a layered cloud computing architecture, as shown in Fig. 1.2 [Jones XXXX]. The
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Fig. 1.2 Layered architecture o
of Cloud Computing (adapted Application
] SaaS
from Jones)
Platform
PaaS
Infrastructure
laaS

Virtualization

Servers and Storage
dSaaS

services offered through cloud computing usually include IT services referred as to
SaaS (Software-as-a-Service), which is shown on top of the stack. SaaS allows users
to run applications remotely from the cloud.

Infrastructure-as-a-service (IaaS) refers to computing resources as a service.
This includes virtualized computers with guaranteed processing power and reserved
bandwidth for storage and Internet access.

Platform-as-a-Service (PaaS) is similar to IaaS, but also includes operating sys-
tems and required services for a particular application. In other words, PaaS is TaaS
with a custom software stack for the given application.

The data-Storage-as-a-Service (dSaaS) provides storage that the consumer is
used including bandwidth requirements for the storage.

An example of Platform-as-aService (PaaS) cloud computing is shown in Fig. 1.3
[“Platform as a Service,” http://www.zoho.com/creator/paas.html]. The PaaS pro-
vides Integrated Development Environment (IDE) including data security, backup
and recovery, application hosting, and scalable architecture.

According to Chappell (2008) there are three categories of cloud services, as
illustrated in Fig. 1.4. Figure 1.4a shows the cloud service SaaS, where the entire
application is running in the cloud. The client contains a simple browser to access
the application. A well-known example of SaaS is salesforce.com.

Figure 1.4b illustrates another type of cloud services, where the application runs
on the client; however it accesses useful functions and services provided in the
cloud. An example of this type of cloud services on the desktop is Apple’s iTunes.
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Business
Users

Business
Applications

IDE

Developers Integrated Development Environment

Data | | Bicnk;p Application| | Scalable
Security Recovery Hosting Infrastructure

Cloud

Fig. 1.3 The concept of Platform-as-a-Service, Zoho Creator (adapted from “Platform as a
Service,” http://www.zoho.com/creator/paas.html)

Cloud

a) Software_as_a_Service b) Attached Services Platform

Cloud

Cloud

Application

Extra
Functions

Application

Platform

On- Browser/ L
premises Client Application Application
Users Users Developers

Fig. 1.4 The categories of cloud services (adopted from Chappell (2008))

The desktop application plays music, while the cloud service is used to purchase
a new audio and video content. An enterprise example of this cloud service is
Microsoft Exchange Hosted Services. On-premises Exchange Server is using added
services from the cloud including spam filtering, archiving, and other functions.



1 Cloud Computing Fundamentals 7

Finally, Fig. 1.4c shows a cloud platform for creating applications, which is used
by developers. The application developers create a new SaaS application using the
cloud platform.

1.1.2 Types of Cloud Computing

There are three types of cloud computing (“Cloud Computing,” Wikipedia,
http://en.wikipedia.org/wiki/Cloud_computing): (a) public cloud, (b) private cloud,
and (c) hybrid cloud, as illustrated in Fig. 1.5.

Fig. 1.5 Three types of cloud
computing

Hybrid

Public Private
: Internal

L

User

In the public cloud (or external cloud) computing resources are dynamically pro-
visioned over the Internet via Web applications or Web services from an off-site
third-party provider. Public clouds are run by third parties, and applications from
different customers are likely to be mixed together on the cloud’s servers, storage
systems, and networks.

Private cloud (or internal cloud) refers to cloud computing on private networks.
Private clouds are built for the exclusive use of one client, providing full control
over data, security, and quality of service. Private clouds can be built and managed
by a company’s own IT organization or by a cloud provider.

A hybrid cloud environment combines multiple public and private cloud mod-
els. Hybrid clouds introduce the complexity of determining how to distribute
applications across both a public and private cloud.
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1.1.3 Cloud Computing Versus Cloud Services

In this section we present two tables that show the differences and major attributes
of cloud computing versus cloud services (Jens, 2008). Cloud computing is the
IT foundation for cloud services and it consists of technologies that enable cloud
services. The key attributes of cloud computing are shown in Table 1.1.

In Key attributes of cloud services are summarized in Table 1.2 (Jens, 2008).

Table 1.1 Key Cloud Computing Attributes (adapted from Jens (2008))

Attributes Description
Infrastructure systems It includes servers, storage, and networks that can scale as
per user demand.
Application software It provides Web-based user interface, Web services APIs,
and a rich variety of configurations.
Application development and It supports the development and integration of cloud
deployment software application software.
System and application It supports rapid self-service provisioning and configuration
management software and usage monitoring.
IP networks They connect end users to the cloud and the infrastructure
components.

Table 1.2 Key Attributes of Cloud Services (adapted from Jens (2008))

Attributes Description

Offsite. Third-party provider In the cloud execution, it is assumed that third-party
provides services. There is also a possibility of in-house
cloud service delivery.

Accessed via the Internet Services are accessed via standard-based, universal network
access. It can also include security and quality-of-service
options.

Minimal or no IT skill required There is a simplified specification of requirements.

Provisioning It includes self-service requesting, near real-time
deployment, and dynamic and fine-grained scaling.

Pricing Pricing is based on usage-based capability and it is
fine-grained.

User interface User interface include browsers for a variety of devices and
with rich capabilities.

System interface System interfaces are based on Web services APIs

providing a standard framework for accessing and
integrating among cloud services.

Shared resources Resources are shared among cloud services users; however
via configuration options with the service, there is the
ability to customize.
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1.2 Enabling Technologies

Key technologies that enabled cloud computing are described in this section; they
include virtualization, Web service and service-oriented architecture, service flows
and workflows, and Web 2.0 and mashup.

1.2.1 Virtualization

The advantage of cloud computing is the ability to virtualize and share resources
among different applications with the objective for better server utilization.
Figure 1.6 shows an example Jones]. In non-cloud computing three independent
platforms exist for three different applications running on its own server. In the
cloud, servers can be shared, or virtualized, for operating systems and applications
resulting in fewer servers (in specific example two servers).

Fig. 1.6 An example of

. Lo Application
virtualization: in non-cloud
computing the're is a need for — 0Ss 2 Aopjicati
three servers; in the cloud Application pplication
computing, two servers are
used (adapted from Jones) 0S 1 Server Y 0s3
Server X Server Z

J

Application| Application
Application
0S 1 0S2
0S 3
Hypervisor
Server A Server B

Virtualization technologies include virtual machine techniques such as VMware
and Xen, and virtual networks, such as VPN. Virtual machines provide virtual-
ized IT-infrastructures on-demand, while virtual networks support users with a
customized network environment to access cloud resources.
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1.2.2 Web Service and Service Oriented Architecture

Web Services and Service Oriented Architecture (SOA) are not new concepts;
however they represent the base technologies for cloud computing. Cloud services
are typically designed as Web services, which follow industry standards including
WSDL, SOAP, and UDDI. A Service Oriented Architecture organizes and man-
ages Web services inside clouds (Vouk, 2008). A SOA also includes a set of cloud
services, which are available on various distributed platforms.

1.2.3 Service Flow and Workflows
The concept of service flow and workflow refers to an integrated view of service-

based activities provided in clouds. Workflows have become one of the important
areas of research in the field of database and information systems (Vouk, 2008).

1.2.4 Web 2.0 and Mashup

Web 2.0 is a new concept that refers to the use of Web technology and Web design to
enhance creativity, information sharing, and collaboration among users (Wang, Tao,

RSS
Feed Server

Database
Server

Mapping
Server

Web 2.0
FAT Client

Web 1.0
Server

User
Interface Gadget
Components Server 1

Gadget
Server 2

Gadget Gadget phone

Repository Server n

Fig. 1.7 Cloud computing architecture uses various components at different levels (adapted from
Hutchinson and Ward (2009))
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& Kunze, 2008). On the other hand, Mashup is a web application that combines data
from more than one source into a single integrated storage tool. Both technologies
are very beneficial for cloud computing.

Figure 1.7 shows a cloud computing architecture, adapted from Hutchinson and
Ward (2009), in which an application reuses various components. The components
in this architecture are dynamic in nature, operate in a SaaS model, and leverage
SOA. The components closer to the user are smaller in nature and more reusable.
The components in the center contain aggregate and extend services via mashup
servers and portals.Data from one service (such as addresses in a database) can be
mashed up with mapping information (such as Yahoo or Google maps) to produce
an aggregated view of the information.

1.3 Cloud Computing Features

Cloud computing brings a number of new features compared to other computing
paradigms (Wang et al., 2008; Grossman, 2009). There are briefly described in this
section.

e Scalability and on-demand services
Cloud computing provides resources and services for users on demand. The
resources are scalable over several data centers.

e User-centric interface
Cloud interfaces are location independent and can be accesses by well established
interfaces such as Web services and Internet browsers.

e Guaranteed Quality of Service (QoS)
Cloud computed can guarantee QoS for users in terms of hardware/CPU
performance, bandwidth, and memory capacity.

e Autonomous system
The cloud computing systems are autonomous systems managed transparently to
users. However, software and data inside clouds can be automatically recon-
figured and consolidated to a simple platform depending on user’s needs.

e Pricing

Cloud computing does not require up-from investment. No capital expenditure is
required. Users pay for services and capacity as they need them.

1.3.1 Cloud Computing Standards

Cloud computing standards have not been yet fully developed; however a num-
ber of existing typically lightweight, open standards have facilitated the growth
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Table 1.3 Cloud computing standards (“Cloud Computing,” Wikipedia, http://en.wikipedia.org/
wiki/Cloud_computing)

Communications: HTTP, XMPP
Security: OAuth, OpenID, SSL/TLS

Applications Syndication: Atom
Client Browsers: AJAX
Offline:” HTMLS
Implementations Virtualization: OVF
Platform Solution stacks: LAMP
Service Data: XML, JSON

Web services: REST

of cloud computing (“Cloud Computing,” Wikipedia, http://en.wikipedia.org/wiki/
Cloud_computing). Table 1.3 illustrates several of these open standards, which are
currently used in cloud computing.

1.3.2 Cloud Computing Security

One of the critical issues in implementing cloud computing is taking virtual
machines, which contain critical applications and sensitive data, to public and shared
cloud environments. Therefore, potential cloud computing users are concerned
about the following security issues (“Cloud Computing Security,” Third Brigade,
www.cloudreadysecurity.com.).

e Will the users still have the same security policy control over their applications
and services?

e Can it be proved to the organization that the system is still secure and meets
SLAs?

e Is the system complaint and can it be proved to company’s auditors?

In traditional data centers, the common approaches to security include perime-
ter firewall, demilitarized zones, network segmentation, intrusion detection and
prevention systems, and network monitoring tools.

The security requirements for cloud computing providers begins with the same
techniques and tools as for traditional data centers, which includes the application of
a strong network security perimeter. However, physical segmentation and hardware-
based security cannot protect against attacks between virtual machines on the same
server. Cloud computing servers use the same operating systems, enterprise and
Web applications as localized virtual machines and physical servers. Therefore, an
attacker can remotely exploit vulnerabilities in these systems and applications. In
addition, co-location of multiple virtual machines increases the attack surface and
risk to MV-to-VM compromise. Intrusion detection and prevention systems need to
be able to detect malicious activity in the VM level, regardless of the location of the
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VM within the virtualized cloud environment (“Cloud Computing Security,” Third
Brigade, www.cloudreadysecurity.com.).

In summary, the virtual environments that deploy the security mechanisms on
virtual machines including firewalls, intrusion detection and prevention, integrity
monitoring, and log inspection, will effectively make VM cloud secure and ready
for deployment.

1.4 Cloud Computing Platforms

Cloud computing has great commercial potential. According to market research firm
IDC, IT cloud services spending will grow from about $16B in 2008 to about $42B
in 2012 and to increase its share of overall IT spending from 4.2% to 8.5%.

Table 1.4 presents key players in cloud computing platforms and their key
offerings.

Table 1.4 Key Players in Cloud Computing Platforms (adapted from Lakshmanan (2009))

Cloud computing Year of
Company platform launch Key offerings
Amazon. com AWS (Amazon 2006 Infrastructure as a service (Storage,
Web Services) Computing, Message queues,
Datasets, Content distribution)
Microsoft Azure 2009 Application platform as a service
(.Net, SQL data services)
Google Google App. 2008 Web Application Platform as a
Engine service (Python run time
environment)
IBM Blue Cloud 2008 Virtualized Blue cloud data center
Salesforce.com Force.com 2008 Proprietary 4GL Web application
framework as an on Demand
platform

Table 1.5 compares three cloud computing platforms, Amazon, Google, and
Microsoft, in terms of their capabilities to map to different development models
and scenarios (“Which Cloud Platform is Right for You?,” www.cumulux.com.).

1.4.1 Pricing

Pricing for cloud platforms and services is based on three key dimensions:
(i) storage, (ii) bandwidth, and (iii) compute.

Storage is typically measured as average daily amount of data stored in GB over
a monthly period.
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Table 1.5 Cloud Computing Platforms and Different Scenarios (adapted from “Which Cloud
Platform is Right for You?,” www.cumulux.com.)

(1) Scenario
Characteristics
Amazon

Google

Microsoft

(2) Scenario
Characteristics
Amazon

Google

Microsoft

(3) Scenario
Characteristics
Amazon

Google

Microsoft

(4) Scenario
Characteristics

Amazon
Google

Microsoft

(5) Scenario
Characteristics
Amazon

Google

Microsoft

On-premise application unchanged in the cloud

Multiple red legacy, java or .NET based application

Threat the machine as another server in the data center and do the necessary
changes to configuration

Needs significant refactoring of application and data logic for existing Java
application

If existing app is ASP.NET application, then re-factor data, otherwise
refactoring effort can be quite significant depending on the complexity

Scalable Web application

Moderate to high Web application with a back-end store and load balancing

Threat the machine instance as another server in the data center and do the
necessary changes to configuration. But scalability and elasticity is manual
configuration

Use dynamically scalable features of AppEngine and scripting technologies
to build rich applications

Build scalable Web applications using familiar .NET technologies. Scaling
up/down purely driven by configuration.

Parallel processing computational application

Automated long running processing with little to no user interaction.

Need to configure multiple machine instances depending on the scale needed
and manage the environments.

Platform has minimal built-in support for building compute heavy
applications. Certain application scenarios, such as image manipulation,
are easier to develop with built-in platform features.

With worker roles and storage features like Queues and blobs, it is easy to
build a compute heavy application that can be managed and controlled for
scalability and elasticity.

Application in the cloud interacts with on-premise data

Cloud based applications interacting with on-premise apps for managing
transactions of data

Applications in EC2 server cloud can easily be configured to interact with
applications running on premise.

No support from the platform to enable this scenario. Possible through each
app using intermediary store to communicate.

From features like Service Bus to Sync platform components it is possible to
build compelling integration between the two environments.

Application in the cloud interacts with on-premise application

On-premise applications

Applications in EC2 server cloud can easily be configured to interact with
applications running on premise.

No support from the platform to enable this scenario. Possible through each
app using intermediary store to communicate.

From features like Service Bus to Sync platform components it is possible to
build compelling integration between the two environments.
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Bandwidth is measured by calculating the total amount of data transferred
in and out of platform service through transaction and batch processing.
Generally, data transfer between services within the same platform is free
in many platforms.

Compute is measured as the time units needed to run an instance, or application,
or machine to servicing requests. Table 6 compares pricing for three major
cloud computing platforms.

In summary, by analyzing the cost of cloud computing, depending on the appli-
cation characteristics the cost of deploying an application could vary based on the
selected platform. From Table 1.6, it seems that the unit pricing for three major plat-
forms is quite similar. Besides unit pricing, it is important to translate it into monthly
application development, deployments and maintenance costs.

Table 1.6 Pricing comparison for major cloud computing platforms (adapted from “Which Cloud
Platform is Right for You?,” www.cumulux.com.)

Resource UNIT Amazon Google Microsoft
Stored data GB per month $0.10 $0.15 $0.15
Storage transaction Per 10 K requests $0.10 $0.10
Outgoing bandwidth GB $0.10 - $0.17 $0.12 $0.15
Incoming bandwidth GB $0.10 $0.10 $0.10
Compute time Instance Hours $0.10 - $1.20 $0.10 $0.12

1.4.2 Cloud Computing Components and Their Vendors

The main elements comprising cloud computing platforms include com-
puter hardware, storage, infrastructure, computer software, operating systems,
and platform virtualization. The leading vendors providing cloud comput-
ing components are shown in Table 1.7 (“Cloud Computing,” Wikipedia,
http://en.wikipedia.org/wiki/Cloud_computing).

Table 1.7 The leading vendors of cloud computing components

Cloud computing

components Vendors

Computer hardware Dell, HP, IBM, Sun

Storage Sun, EMC, IBM

Infrastructure Cisco, Juniper Networks, Brocade Communication
Computer software 3tera. Eucalyptus. G-Eclipse. Hadoop

Operating systems Solaris, AIX, Linux (Red Hat, Ubuntu)

Platform virtualization Citrix, VMWare, IBM, Xen, Linux KVM, Microsoft, Sun xVM
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1.5 Example of Web Application Deployment

In this section we present an example how the combination of virtualization and
on of self service facilitate application deployment (Sun Microsystems, 2009). In
this example we consider a two-tier Web application deployment using cloud, as
illustrated in Fig. 1.8.

Librar
v Deploy
Configure Pattern
Load Load
Load Balancer Balancer
Balancer \\
Web service| |Web service| |Web service
Database | =» | APACHE APACHE APACHE
/
MySQL
/ Database Database Appl.
Web service / MySQL MySQL Storage
APACHE

Fig. 1.8 Example of the deployment of an application into a two-tier Web server architecture
using cloud computing (adapted from Sun Microsystems (2009))

The following steps comprise the deployment of the application:

e The developer selects a load balancer, Web server, and database server appliances
from a library of preconfigured virtual machine images.

e The developer configures each component to make a custom image. The load
balancer is configured, the Web server is populated with its static content by
uploading it to the storage cloud, and the database server appliances are populated
with dynamic content for the site.

e The developer than layers custom code into the new architecture, in this way
making the components meet specific application requirements.

e The developer chooses a pattern that takes the images for each layer and deploys
them, handling networking, security, and scalability issues.

The secure, high-availability Web application is up and running. When the appli-
cation needs to be updated, the virtual machine images can be updated, copied
across the development chain, and the entire infrastructure can be redeployed.

In this example, a standard set of components can be used to quickly deploy an
application. With this model, enterprise business needs can be met quickly, with-
out the need for the time-consuming, manual purchase, installation, cabling, and
configuration of servers, storage, and network infrastructure.
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Small and medium enterprises were the early adopters to cloud computing.
However, there are recently a number of examples of cloud computing adoptions
in the large enterprises. Table 1.8 illustrates three examples of cloud computing use
in the large enterprises (Lakshmanan, 2009).

Table 1.8 Cloud computing examples in large enterprises

Enterprise Scenario Usage Benefits
Eli Lilly R&D High Amazon server and Quick deployment time
Performance storage cluster for at a lower cost.
Computing drug discovery
analysis and
modeling.

New York Times Data Conversion Conversion of archival ~ Rapid provisioning and
articles (3 million) higher elasticity on
into new data formats the infrastructure
using Amazon elastic resources.
compute services.

Pitney Bowes B2B Application Hosted model mail Flexibility at a lower
printing application cost and new business
for clients. Uses MS opportunity.
Azure.net and SQL

services for the
hosted model option
(2009 Go live).

1.6 Cloud Computing Challenges

In summary, the new paradigm of cloud computing provides a number of benefits
and advantages over the previous computing paradigms and many organizations are
adopting it. However, there are still a number of challenges, which are currently
addressed by researchers and practitioners in the field (Leavitt, 2009). They are
briefly presented below.

1.6.1 Performance

The major issue in performance can be for some intensive transaction-oriented and
other data-intensive applications, in which cloud computing may lack adequate
performance. Also, users who are at a long distance from cloud providers may
experience high latency and delays.

1.6.2 Security and Privacy

Companies are still concerned about security when using cloud computing.
Customers are worried about the vulnerability to attacks, when information and
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critical IT resources are outside the firewall. The solution for security assumes that
that cloud computing providers follow standard security practices, as described in
Section 1.3.2.

1.6.3 Control

Some IT departments are concerned because cloud computing providers have a
full control of the platforms. Cloud computing providers typically do not design
platforms for specific companies and their business practices.

1.6.4 Bandwidth Costs

With cloud computing, companies can save money on hardware and software; how-
ever they could incur higher network bandwidth charges. Bandwidth cost may be
low for smaller Internet-based applications, which are not data intensive, but could
significantly grow for data-intensive applications.

1.6.5 Reliability

Cloud computing still does not always offer round-the-clock reliability. There were
cases where cloud computing services suffered a few-hours outages.

In the future, we can expect more cloud computing providers, richer services,
established standards, and best practices.

In the research arena, HP Labs, Intel, and Yahoo have launched the distributed
Cloud Research Test Bad, with facilities in Asia, Europe, and North America, with
the objective to develop innovations including cloud computing specific chips. IBM
has launched the Research Computing Cloud, which is an on-demand, globally
accessible set of computing resources that support business processes.

1.7 Cloud Computing in the Future

In summary, cloud computing 1is definitely a type of computing
paradigm/architecture that will remain for a long time to come. In the near
future, cloud computing can emerge in various directions. One possible scenario
for the future is that an enterprise may use a distributed hybrid cloud as illustrated
in Fig. 1.9.

According to this scenario, the enterprise will use the core applications on its
private cloud, while some other applications will be distributed on several private
clouds, which are optimized for specific applications.
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Public Cloud

Public Cloud
Amazon AMS

MS Azure

High Computing and

Failover Infrastructure B2B Applications

Public Cloud
Google App Engine

Private Cloud

Core
Applications

Consumer
Applications

Enterprise

Fig. 1.9 Distributed hybrid cloud architecture (adapted from Lakshmanan (2009))
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Chapter 2
Cloud Computing Technologies and Applications

Jinzy Zhu

2.1 Cloud Computing: IT as a Service

In a nutshell, the existing Internet provides to us content in the forms of videos,
emails and information served up in web pages. With Cloud Computing, the next
generation of Internet will allow us to “buy” IT services from a web portal, drastic
expanding the types of merchandise available beyond those on e-commerce sites
such as eBay and Taobao. We would be able to rent from a virtual storefront the
basic necessities to build a virtual data center: such as CPU, memory, storage, and
add on top of that the middleware necessary: web application servers, databases,
enterprise server bus, etc. as the platform(s) to support the applications we would
like to either rent from an Independent Software Vendor (ISV) or develop ourselves.
Together this is what we call as “IT as a Service,” or ITaaS, bundled to us the end
users as a virtual data center.

Within ITaaS, there are three layers starting with Infrastructure as a Service, or
laaS, comprised of the physical assets we can see and touch: servers, storage, and
networking switches. At the TaaS level, what cloud computing service provider can
offer is basic computing and storage capability, such as the cloud computing cen-
ter founded by IBM in Wuxi Software Park and Amazon EC2. Taking computing
power provision as an example, the basic unit provided is the server, including CPU,
memory, storage, operating system and system monitoring software.

In order to allow users to customize their own server environment, server tem-
plate technology is resorted to, which means binding certain server configuration
and the operating system and software together, and providing customized functions
as required at the same time.

Using virtualization technology, we could provide as little as 0.1 CPU in a virtual
machine to the end user, therefore drastically increasing the utilization potential of
a physical server to multiple users.

J. Zhu (=)
IBM Cloud Computing Center, China
e-mail: jinzyzhu@cn.ibm.com
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With virtualization increasing the number of machines to manage, service pro-
vision becomes crucial since it directly affects service management and the TaaS
maintenance and operation efficiency. Automation, the next core technology, can
make resources available for users through self-service without getting the service
providers involved. A stable and powerful automation management program can
reduce the marginal cost to zero, which in turn can promote the scale effect of cloud
computing.

On the basis of automation, dynamic orchestration of resources can be realized.
Dynamic orchestration of resources aims to meet the requirements of service level.
For example, IaaS platform will add new servers or storage spaces for users auto-
matically according to the CPU utilization of the server, so as to fulfill the terms
of service level made with users beforehand. The intelligence and reliability of
dynamic orchestration of resources technology is a key point here. Additionally,
virtualization is another key technology. It can maximize resource utilization effi-
ciency and reduce cost of IaaS platform and user usage by promoting physical
resource sharing. The dynamic migration function of virtualization technology can
dramatically improve the service availability and this is attractive for many users.

The next layer within ITaaS is Platform as a Service, or PaaS. At the PaaS
level, what the service providers offer is packaged IT capability, or some logical
resources, such as databases, file systems, and application operating environment.
Currently, actual cases in the industry include Rational Developer Cloud of IBM,
Azure of Microsoft and AppEngine of Google. At this level, two core technolo-
gies are involved. The first is software development, testing and running based on
cloud. PaaS service is software developer-oriented. It used to be a huge difficulty
for developers to write programs via network in a distributed computing environ-
ment, and now due to the improvement of network bandwidth, two technologies can
solve this problem: the first is online development tools. Developers can directly
complete remote development and application through browser and remote console
(development tools run in the console) technologies without local installation of
development tools. Another is integration technology of local development tools
and cloud computing, which means to deploy the developed application directly
into cloud computing environment through local development tools. The second
core technology is large-scale distributed application operating environment. It
refers to scalable application middleware, database and file system built with a
large amount of servers. This application operating environment enables appli-
cation to make full use of abundant computing and storage resource in cloud
computing center to achieve full extension, go beyond the resource limitation of
single physical hardware, and meet the access requirements of millions of Internet
users.

The top of the ITaaS is what most non-IT users will see and consume: Software
as a Service (SaaS). At the SaaS level, service providers offer consumer or indus-
trial applications directly to individual users and enterprise users. At this level, the
following technologies are involved: Web 2.0, Mashup, SOA and multi-tenancy.

The development of AJAX technology of Web 2.0 makes Web application easier
to use, and brings user experience of desktop application to Web users, which in
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turn make people adapt to the transfer from desktop application to Web application
easily. Mashup technology provide a capability of assembling contents on Web,
which can allow users to customize websites freely and aggregate contents from
different websites, and enables developers to build application quickly.

Similarly, SOA provides combination and integration function as well, but it pro-
vides the function in the background of Web. Multi-tenancy is a technology that
supports multi tenancies and customers in the same operating environment. It can
significantly reduce resource consumptions and cost for every customer.

The following Table 2.1 shows the different technologies used in different cloud
computing service types.

Table 2.1 IaaS, PaaS and SaaS

Service type

TaaS

PaaS

SaaS

Service category

Service Customization
Service Provisioning

Service accessing and
Using

Service monitoring

Service level
management

Service resource
optimization

Service measurement

Service integration
and combination
Service security

VM Rental, Online
Storage

Server Template

Automation
Remote Console,
Web 2.0

Physical Resource
Monitoring

Dynamic
Orchestration of
Physical Resources

Network
Virtualization,
Server
Virtualization,
Storage
Virtualization

Physical Resource
Metering

Load Balance

Storage Encryption
and Isolation,
VM Isolation,
VLAN, SSL/SSH

Online Operating
Environment,
Online Database,
Online Message
Queue

Logic Resource
Template

Automation

Online Development
and Debugging,
Integration of
Offline
Development Tools
and Cloud

Logic Resource
Monitoring

Dynamic
Orchestration of
Logic Resources

Large-scale
Distributed File
System, Database,
Middleware etc

Logic Resource Usage
Metering
SOA

Data Isolation,
Operating
Environment
Isolation,
SSL

Application and
Software Rental

Application Template

Automation
Web 2.0

Application
Monitoring

Dynamic
Orchestration of
Application

Multi-tenancy

Business Resource
Usage Metering
SOA, Mashup

Data Isolation,
Operating
Environment
Isolation, SSL, Web
Authentication and
Authorization
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Transform any IT capability into a service may be an appealing idea, but to real-
ize it, integration of the IT stack needs to happen. To sum up, key technologies used
in cloud computing are: automation, virtualization, dynamic orchestration, online
development, large-scale distributed application operating environment, Web 2.0,
Mashup, SOA and multi-tenancy etc. Most of these technologies have matured in
recent years to enable the emergence of Cloud Computing in real applications.

2.2 Cloud Computing Security

One of the biggest user concerns about Cloud Computing is its security, as nat-
urally with any emerging Internet technology. In the enterprise data centers and
Internet Data Centers (IDC), service providers offer racks and networks only, and
the remaining devices have to be prepared by users themselves, including servers,
firewalls, software, storage devices etc. While a complex task for the end user, he
does have a clear overview of the architecture and the system, thus placing the
design of data security under his control. Some users use physical isolation (such as
iron cages) to protect their servers. Under cloud computing, the backend resource
and management architecture of the service is invisible for users (and thus the word
“Cloud” to describe an entity far removed from our physical reach). Without physi-
cal control and access, the users would naturally question the security of the system.

A comparable analogy to data security in a Cloud is in financial institutions where
a customer deposits his cash bills into an account with a bank and thus no longer
have a physical asset in his possession. He will rely on the technology and financial
integrity of the bank to protect his now virtual asset. Similarly we’ll expect to see a
progression in the acceptance of placing data in physical locations out of our reach
but with a trusted provider.

To establish that trust with the end users of Cloud, the architects of Cloud com-
puting solutions do indeed designed rationally to protect data security among end
users, and between end users and service providers.

From the point of view of the technology, the security of user data can be reflected
in the following rules of implementation:

1. The privacy of user storage data. User storage data cannot be viewed or changed
by other people (including the operator).

2. The user data privacy at runtime. User data cannot be viewed or changed by other
people at runtime (loaded to system memory).

3. The privacy when transferring user data through network. It includes the security
of transferring data in cloud computing center intranet and internet. It cannot be
viewed or changed by other people.

4. Authentication and authorization needed for users to access their data. Users can
access their data through the right way and can authorize other users to access.

To ensure security, cloud computing services can use corresponding technologies
shown in the Table 2.2 below:
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Table 2.2 Recommendations to operators and users on cloud security

To Other Users To Operators
The privacy of user storage data SAN network zoning, mapping  Bare device encryption,
Clean up disks after callback file system encryption
File system authentication
The privacy of user data at VM isolation, OS isolation OS isolation
runtime
The privacy when transferring SSL, VLAN, VPN SSL, VPN
user data through network
Authentication and authorization Firewall, VPN authentication,
needed for users to access their VPN authentication, OS authentication
data OS authentication

In addition to the technology solutions, business and legal guidelines can be
employed to enforce data security, with terms and conditions to ensure user rights
to financial compensation in case of breached security.

2.3 Cloud Computing Model Application Methodology

Cloud computing is a new model for providing business and IT services. The service
delivery model is based on future development consideration while meeting cur-
rent development requirements. The three levels of cloud computing service (IaaS,
PaaS and SaaS) cover a huge range of services. Besides computing and the ser-
vice delivery model of storage infrastructure, various models such as data, software
application, programming model etc. can also be applicable to cloud computing.
More importantly, the cloud computing model involves all aspects of enterprise
transformation in its evolution, so technology architecture is only a part of it,
and multi-aspect development such as organization, processes and different busi-
ness models should also be under consideration. Based on standard architecture
methodology with best practices of cloud computing, a Cloud Model Application
Methodology can be used to guide industry customer analysis and solve potential
problems and risks emerged during the evolution from current computing model
to cloud computing model. This methodology can also be used to instruct the
investment and decision making analysis of cloud computing model, determine the
process, standard, interface and public service of IT assets deployment and manage-
ment to promote business development. The diagram below shows the overall status
of this methodology (Fig. 2.1).

2.3.1 Cloud Computing Strategy Planning Phase

Cloud strategy contains two steps to ensure a comprehensive analysis for the strat-
egy problems that customers might face when applying cloud computing mode.
Based on Cloud Computing Value Analysis, these two steps will analyze the model
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IBM Cloud Computing Blueprint Model
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Fig. 2.1 Cloud computing methodology overview

condition needed to achieve customers’ target, and then will establish a strategy to
function as the guideline.

(1) Cloud Computing Value Proposition

The target of this step is to analyze the specific business value and possi-
ble combination point between cloud computing mode and specific users by
leveraging the analysis of cloud computing users’ requirement model and con-
sidering the best practices of cloud computing industry. Analyze the key factors
that might influence customers to apply cloud computing mode and make sug-
gestions on the best customer application methods. In this analysis, we need
to identify the main target for customer to apply cloud computing mode, and
the key problems they wish to solve. Take some common targets as exam-
ples: IT management simplification, operation and maintenance cost reduction;
business mode innovation; low cost out-sourcing hosting; high service quality
out-sourcing hosting etc.

The analysis result will be provided to support decision-making level to
make condition assessments and strategy for future development and prepare for
the strategy establishment and organization of the following cloud computing.

(2) Cloud Computing Strategy Planning

This step is the most important part of strategy phase. Strategy establishment
is based on the analysis result of the value step, and aims to establish the
strategy documentation according to the good understanding of various con-
ditions that customers might face when applying cloud computing mode to plan
for future vision and perspective. Professional analysis made by the method
above typically involves broad customer business model research, organiza-
tion structure analysis and operation process identification; also, there are some
non-functional requirement and limitation in the plan, such as the concern for
security standard, reliability requirement and rules and regulations.
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2.3.2 Cloud Computing Tactics Planning Phase

At the phase of cloud planning, it is necessary to make a detailed investigation on
customer position and to analyze the problems and risks in cloud application both at
present and in the future. After that, concrete approaches and plans can be drawn to
ensure that customers can use cloud computing successfully to reach their business
goals. This phase includes some practicable planning steps in multiple orders listed
as follows,

ey

2

3)

“4)

Business Architecture Development

While capturing the organizational structures of enterprises, the business mod-
els also get the information on business process support. As various business
processes and relative networks in enterprise architecture are being set down
one after another, gains and losses brought by relative paths in the business
development process will also come into people’s understanding. We catego-
rize these to business interests and possible risks brought by cloud computing
application from a business perspective.

IT Architecture Development

It is necessary to identify the major applications needed to support enterprises
business processes and the key technologies needed to support enterprise appli-
cations and data systems. Besides, cloud computing maturity models should be
introduced and the analysis of technological reference models should be made,
so as to provide help, advices and strategy guide for the design and realization
of cloud computing mode in the enterprise architecture.

Requirements on Quality of Service Development

Compared with other computing modes, the most distinguishing feature of
cloud computing mode is that the requirements on quality of service (also called
non-functional needs) should be rigorously defined beforehand, for example,
the performance, reliability, security, disaster recovery, etc. This requirement is
a key factor in deciding whether a cloud computing mode application is suc-
cessful or not and whether the business goal is reached; it is also an important
standard in measuring the quality of cloud computing service or the competence
in establishing a cloud computing center.

Transformation Plan Development

It is necessary to formulate all kinds of plans needed in the transformation from
current business systems to the cloud computing modes, including the general
steps, scheduling, quality guarantee, etc. Usually, an infrastructure service cloud
cover different items such as infrastructure consolidation plan report, oper-
ation and maintenance management system plan, management process plan,
application system transformation plan, etc.

2.3.3 Cloud Computing Deployment Phase

The deployment phase focuses mainly on the programming of both strategy
realization phase and the planning phases. Two steps are emphasized in this phase:
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(1) Cloud Computing Provider or Enabler Chosen
According to the past analysis and programming, customers may have to choose
a cloud computing provider or an enabler. It is most important to know that
the requirement on service level agreement (SLA) is still a deciding factor for
providers in winning a project.

(2) Maintenance and Technical Service
As for maintenance and technical service, different levels of standards are
adopted; these standards are defined by the requirement on quality of services
made beforehand. Cloud computing providers or builders have to ensure the
quality of services, for example, the security of customers in service operation
and the reliability of services.

2.4 Cloud Computing in Development/Test

Economic crises can bring with enterprise unprecedented business challenges and
more competitions for the same markets. To address these challenges, enterprises
have to optimize and update their business operations. At this critical moment, only
by offering agile operating systems to end users can enterprises turn the crisis into
opportunities and promote better development.

Years of IT development has closely linked IT with the business systems, and
operation and maintenance systems of enterprises. To a large extent, the optimiza-
tion and updating of business is indeed that of the IT system, which requires
enterprises to keep innovating in business system. As a result, how to develop new IT
systems quickly while doing rigorous tests to provide stable and trustworthy services
for customers have become the key to enterprise development. Thus, the develop-
ment testing centers have become the engines of enterprises growth and how to keep
the engines operating in a quick and effective way has become a major concern for
enterprise CIOs.

As the importance of development centers in companies grows, there will be
more and more projects, equipments and staff in these centers. How to establish
a smart development center has become many people’s concern. As the latest IT
breakthrough, how will cloud computing help to transform development test centers
and bring competitive advantages to enterprises? We want to illustrate this problem
through the following case:

Director A is the manager of an information center and he is now in charge
of all development projects. Recently, he is thinking about how to best optimize
his development and testing environment. After investigation, he concludes that the
requirements of the new test center are as follows:

Reducing the investment on hardware

Providing environment quickly for new development testing projects
Reusing equipments

Ensuring project information security
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Based on A’s requirement analysis, he can use Cloud Computing solutions to
establish a cloud-computing-based test development center for his company.

e Reducing the cost

In traditional test development systems, companies would set up an environment
for each test and development project. Different test systems may have different
functions, performances, or stabilities and thus software and hardware configura-
tions will vary accordingly. However, in a cloud test development platform, all the
servers, memories and networks needed in test development are pooling-managed;
and through the technology of virtualization, each test or development project is
provided with a logical hardware platform.

The virtual hardware platforms of multiple projects can share the same set
of hardware resources, thus through integrating the development test project, the
hardware investment will be greatly reduced.

e Providing environment for new projects

Cloud can automatically provide end users with IT resources, which include com-
puting resources, operating system platforms and application software. All of these
are realized through the automation module of Cloud.

Automation of computing resources: In the Cloud service interface, when end
users input the computing resources (processor, storage and memory) needed
according to the requirements of the application system, the Cloud platform will
dynamically pick out the resources in the corresponding resource pool and prepare
for the installation of the system platform.

Automation of system platforms: When the computing resources allocation is fin-
ished, the automation of system platforms will help you to install the system with the
computing resources on the base of the chosen system platform (windows, Linux,
AIX, etc.) dynamically and automatically. It can concurrently install operation sys-
tem platforms for all computers in need and customize an operation system with
customization parameters and system service for customers. Moreover, the users,
networks and systems can all be set automatically.

Automation of application software: The software of enterprises would be
controlled completely. The software distribution module can help you to deploy
complex mission-critical applications from one center spot to multiple places
quickly and effectively.

Through automation, Cloud can provide environment for new development test
projects and accelerate the process of development tests.

e Reusing equipments
Cloud has provided a resource management process based on development life

cycles test. The process covers many operations such as computing resource estab-
lishment, modification, release and reservation. When the test development projects
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are suspended or completed, Cloud Platform can make a back-up of the existing
test environment and release the computing resources, thereby realizing the reuse of
computing resources.

e Ensuring project information security

The cloud computing platform has provided perfect means to ensure the security
and isolation of each project. There are two ways for users to access the system:
accessing the Web management interface or accessing the project virtual machine.
To access a Web interface, one needs a user ID and a password. To control a virtual
machine access, the following methods can be adopted:

e User authentication is conducted through the VPN equipment in the external
interface of the system.

e Each project has one and only a Vlan, and the virtual machine of each project
is located inside the Vlan. The switches and the hypervisors in the hosts can
guarantee the isolation of the Vlan.

e The isolation of virtual machine is guaranteed by virtual engine itself.

e Besides, user authentication of the operation systems can also protect user
information.

Vlan is created dynamically along with the establishment of the project. Unicast
or broadcast messages can be sent among project virtual machines or between the
virtual machine and the workstation of the project members. Virtual machines of
different projects are isolated from each other, thereby guaranteeing the security of
project data. A user can get involved in several projects and meanwhile visit several
virtual machines of different projects.

The new generation of intelligent development test platforms needs the support
of intelligent IT infrastructure platforms. By establishing intelligent development
test platforms through cloud computing, a new IT resource supply mode can be
formed. Under this mode, the test development center can automatically manage
and dynamically distribute, deploy, configure, reconfigure and recycle IT resources
based on the requirements of different projects; besides, it can also install software
and application systems automatically. When projects are over, the test development
center can recycle the resources automatically, thereby making the best use of the
computing capabilities.

2.5 Cloud-Based High Performance Computing Clusters

In the development history of information science from the last half a century, High
Performance Computing (HPC) has always been a leading technology at the time.
It has become a major tool for future innovations of both theoretical and research
science. As new cross-disciplines combining traditional subjects and HPC emerge
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in the areas of computational chemistry, computational physics and bioinformatics,
computing technology need to take a leap forward as well to meet the demands of
these new research topics.

With the current financial crisis, how to provide higher computing performance
with less resource input has become a big challenge for the HPC centers. In the
construction of a new generation of computing center with high performance, we
should not only pay attention to the choice of software and hardware, but also take
fully account of the center operation, utilization efficiency, technological innova-
tion cooperation and other factors. The rationality of the general framework and
the effectiveness of resource management should also be fully considered. Only by
doing these can the center gain long-term high-performance capacity in computing
research and supply.

In other words, the new generation of high-performance computing center
does not only provide traditional high-performance computing, nor it is only a
high-performance equipment solution. The management of resources, users and vir-
tualization, the dynamic resource generation and recycling should also be taken into
account. In this way, the high-performance computing based on cloud computing
technology is born.

The cloud computing-based high-performance computing center aims to solve
the following problems:

High-performance computing platform generated dynamically

Virtualized computing resources

High-performance computer management technology combined with tradi-
tion ones

High-performance computing platform generated dynamically

In traditional high-performance computing environment, physical equipments
are configured to meet the demands of customers; for example, Beowulf Linux and
WCCS Architecture are chosen to satisfy customers’ requirements on computing
resources. All of the operation systems and parallel environment are set beforehand,
and cluster management software is used to manage the computing environment.
However, as high-performance computing develops, there are more and more end
users and application software; thus, the requirements on the computing platform
become more diverse. Different end users and application software may require dif-
ferent operation systems and parallel environment. High-performance computing
requires a new way of resource supply, in which the platform should be dynami-
cally generated according to the needs of every end user and application software;
the platform can be open, including Linux, Windows or UNIX.

e Virtualized computing resources
Since few virtualized architecture are used in traditional high-performance com-

puting, this kind of platform cannot manage virtualized resources. However, as
high-performance computing develops, in many cases we need to attain more



32 J. Zhu

virtualized resources through virtualization, for example, the development and
debugging of parallel software, and the support for more customer application etc.
In the cloud computing-based high-performance computing center, the virtual-
ization of physical resources can be realized through the Cloud platform; moreover,
virtualized resources can be used to establish high-performance computing platform
and generate high-performance computing environment whose scale is larger than
that of the actual physical resource so as to meet the requirements of customers.

e Combination with traditional management technology

The cloud computing-based high-performance computing platform can not only
manage computers though the virtualization and dynamic generation technology,
but also work together with traditional cluster and operation management soft-
ware in enabling users to manage the virtualized high-performance computers in
a traditional way, and submit their own works.

A new IT resources provision model can be attained by the adoption of cloud
computing infrastructure and high-performance computing center construction. In
this model, the computing center can automatically manage and dynamically dis-
tribute, deploy, configure, reconfigure and recycle the resources. The automatic
installation of software and application can be realized, too. By use of the model,
the high-performance computing resources can be distributed efficiently and dynam-
ically. When the project is finished, the computing center can automatically recycle
the resources to make full use of the computing power. Taking advantage of cloud
computing, the high-performance computing center can not only provide high calcu-
lating power for scientific research institutions, but also expand the service content
of computing center. In other words, it can serve as a data center to support other
applications and promote higher utilization efficiency of entire resources.

2.6 Use Cases of Cloud Computing

2.6.1 Case Study: Cloud as Infrastructure for an Internet
Data Center (IDC)

In the 1990’s, Internet portals spent huge amount of investment to attract eyeballs.
Rather than profits and losses, their market valuation were based on the number
of unique “hits” or visitors. This strategy proved to work out well as these portals
begin to offer advertisement opportunities targeting their installed user base, as well
as new paid services to the end user, thereby increasing revenue per capita in a
theoretically infinite growth curve.

Similarly Internet Data Centers (IDC) have become a strategic initiative for
Cloud service providers to attract users. With a critical mass of users consuming
computing resources and applications, an IDC would become a portal attracting
more applications and more users in a positive cycle.
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The development of the next generation of IDC hinges on two key factors. The
first is the growth of Internet. By the end of June 2008, for example, Internet users
in China totaled 253 million and the annual growth rate is as high as 56.2%.!
As a result, the requirement on Internet storage and traffic capacity grows, which
means Internet operators have to provide more storage and servers to meet users’
needs. The second is the development of mobile communication. By the end of
2008, the number of mobile phone users in China has amounted to 4 billion. The
development of mobile communication drives server-based computing and storage,
which enables users to access to the data and computing services needed via Internet
through lightweight clients.

In the time of dramatic Internet and mobile communication expansion, how can
we build new IDC with core competency? Cloud computing provides an innovative
business model for data centers, and thereby can help telecom operators to pro-
mote business innovation and higher service capabilities against the backdrop of the
whole business integration of fixed and mobile networks.

2.6.1.1 The Bottleneck on IDC Development

Products and services offered by a traditional IDC are highly homogenized. In
almost of all the

IDC’s, basic collocation services account for majority of the revenue, while
value-added services add only a small part of it. For example, in one of the IDC’s of
a telecom operator, the hosting service claims 90% of its revenue, while value-added
service takes only 10%. This makes it impossible to meet customers’ requirements
on load balance, disaster recovery, data flow analysis, resource utilization analysis,
and etc.

The energy utilization is low, but the operation costs are very high. According to
CCID research statistics,” the energy costs of IDC enterprises make up about 50%
of their operating costs and more servers will lead to an exponential increase in the
corresponding power consumption.> With the increase of the number of Internet
users and enterprise IT transformation, IDC enterprises will have to face a sharp
increase in power consumption as their businesses grow. If effective solutions are
not taken immediately, the high costs will undermine the sustained development of
these enterprises.

Besides, as online games and Web 2.0 sites become increasingly popular, all
types of content including audio, videos, images and games will need a massive
storage and relevant servers to support transmission. This will result in a steady
increase in enterprises’ requirements for IDC services, and higher standards on the
utilization efficiency of resources in data centers as well as the service level.

l\www.ibm.com/cloud

2blog.irvingwb.c0m/b10g/2008/07/what—is—cloud—c.htrnl
3Source: CCIDConsulting, 2008-2009 China IDC Market Research Annual Report
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Under the full service operation model emerged after the restructuring of telecom
operators, the market competition becomes more and more fierce. The consolidation
of fixed network and mobile services imposes higher requirements on telecom IDC
operators as they have to introduce new services to meet market demands in time.

2.6.1.2 Cloud Computing Provides IDC with a New Infrastructure Solution

Cloud computing provides IDC with a solution that takes into consideration of
both future development strategies and the current requirement for development.
Cloud computing builds up a resource service management system where physi-
cal resources is on the input, and the output is the virtual resources on right time
and with the right volume and right quality. Thanks to the virtualization technology,
the resources of IDC centers including servers, storage and networks are put into a
huge resource pool by cloud computing. With cloud computing management plat-
form, administrators are able to dynamically monitor, schedule and deploy all the
resources in the pool and provide them for the users via network. A unified resource
management platform can lead to higher efficiency of IDC operation and sched-
ule efficiency and utilization of the resources in the center and lower management
complexity. The automatic resource deployment and software installation help to
guarantee the timely introduction of new services and can lower the time-to-market.
Customers can use the resources in data centers by renting based on their business
needs. Besides, as required by business development needs, they are allowed to
adjust the resources that they rent timely, and pay fees according to resource usage.
This kind of flexible charging mode makes IDC more appealing. The management
through a unified platform is also helpful to IDC expansion. When an IDC operator
needs to add resources, new resources can be added to the existing cloud computing
management platform to be managed and deployed uniformly.

Cloud computing will make it an unceasing process to upgrade software and add
new functions and services, which can be done through intelligent monitoring and
automatic installation program instead of manual operation.

According to the Long Tail Theory, cloud computing builds infrastructures based
on the scale of market head, and provides marginal management costs that are nearly
zero in market tail as well as a plug-and-play technological infrastructure. It man-
ages to meet diversified requirements with variable costs. In this way, the effect of
the Long Tail is realized to keep a small-volume production of various items and by
the use of innovative IT technology, and it sets up a market economy model which
is open to competition and favorable to the survival of the fittest.

2.6.1.3 The Value of Cloud Computing for IDC Service Providers

First of all, based on cloud computing technology, IDC is flexible and scalable, and
can realize the effect of Long Tail at a relatively low cost. The cloud computing
platform is able to develop and launch new products at a low marginal cost of man-
agement. Therefore, startup costs of new business can be reduced to nearly zero, and
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the resources would not be limited to a single kind of products or services. So under
a specified investment scope, the operators can greatly expand products lines, and
meet the needs of different services through the automatic scheduling of resources,
thereby making a best use of the Long Tail.

Secondly, the cloud computing dynamic infrastructure is able to deploy resources
in a flexible way to meet business needs at peak times. For example, during the
Olympics, the websites related to the competitions are flooded with visitors. To
address this problem, the cloud computing technology would deploy other idle
resources provisionally to support the requirements on resources at the peak hours.
The United States Olympic Committee has applied the cloud computing technolo-
gies provided by AT&T to support competitions viewing during Olympics. Besides,
SMS and telephone calls on holidays, as well as the application and inquiry days for
examinations also witness the requirements for resources at the peak.

Thirdly, cloud computing improves the return on investment for IDC service
providers. By improving the utilization and management efficiency of resources,
cloud computing technologies can reduce computing resources, power consump-
tion, and human resource costs. Additionally, it can lead to shorter time-to-market
for a new service, thereby helping IDC service providers to occupy the market.

Cloud computing also provides an innovative charging mode. IDC service
providers charge users based on the resource renting conditions and users only have
to pay for what they use. This makes the payment charging more transparent and
can attract more customers (Table 2.3).

2.6.1.4 The Value Brought by Cloud Computing for IDC Users

First, initial investments and operating costs can be lowered, and risks can be
reduced. There is no need for IDC users to make initial investments in hardware

Table 2.3 Value comparison on co-location, physical server renting and IaaS for providers

Physical server

Co-location renting IaaS with cloud computing
Profit margin Low. Low. High.
Intense Intense Cost saving by resource
competition competition sharing
Value add service ~ Very few Few Rich, such as IT service

management, software
renting, etc

Operation Manual operation. ~ Manual operation. ~ Automatic and integrated
Complex Complex operation. End to end
request management

Response to Manual action. Slow Manual action. Slow Automatic process. Fast
customer
request

Power Normal Normal Reduce power by server
consumption consolidation and sharing.

Scheduled power off
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and expensive software licenses. Instead, users only have to rent necessary hard-
ware and software resources based on their actual needs, and pay according to usage
conditions. In the era of enterprise informatization, more and more subject matter
experts have begun to establish their own websites and information systems. Cloud
computing can help these enterprises to realize informatization with relatively less
investment and fewer IT professionals.

Secondly, an automatic, streamlined and unified service management platform
can rapidly meet customers’ increased requirements for resources, and can enable
them to acquire the resources in time. In this way customers can become more
responsive to market requirements and enhance business innovation.

Thirdly, IDC users are able to access more value-added services and achieve
faster requirement response. Through the IDC cloud computing unified service
delivery platform, the customers are allowed to put forward personalized require-
ments and enjoy various kinds of value-added services. And their requirements
would get a quick response, too (Table 2.4).

2.6.1.5 Cloud Computing Can Make Fixed Costs Variable

An IDC can provide 24*7 hosting services for individuals and businesses. Besides
traditional hosting service, these clients also need the cloud to provide more applica-
tions and services. In so doing, enterprises are able to gain absolute control on their
own computing environment. Furthermore, when necessary, they can also purchase
online the applications and services that are needed quickly at any time, as well as
adjust the rental scale timely.

Table 2.4 Value comparison on co-location, physical server renting and IaaS for users

Co-location Physical server renting TAAS using Cloud
Performance Depend on hardware Depend on hardware Guaranteed
performance
Price Server investment plus Bandwidth and server CPU, memory, storage,
bandwidth and space renting fee bandwidth fee. Pay
fee per use
Availability Depend on single Depend on single High available by
hardware hardware hardware failover
Scalability Manual scale out Manual scale out Automated scale out
System Manual hardware setup ~ Manual hardware setup ~ Automated OS and
management and configuration. and configuration. software installation.
Complex Complex Remote monitoring
and control. Simple
Staff High labor cost and skill High labor cost and skill Low labor cost and skill
requirement requirement requirement
Usability Need on site operation Need on site operation All work is done

through Web UL
Quick action
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2.6.1.6 An IDC Cloud Example

In one example, an IDC in Europe serves industry customers in four neighboring
countries, which covers sports, government, finance, automobile and the healthcare.

This IDC attaches great importance to cloud computing technology in the hope
of establishing a data center that is flexible, demand-driven and responsive. It has
decided to work with cloud computing technology to establish several cross-Europe
cloud centers. The first five data centers are connected by virtual SAN and the lat-
est MPLS technology. Moreover, the center complies with the ISO27001 security
standard, and other security functions that are needed by the banks and government
organizations, including auditing function provided by certified partners, are also
realized (Fig. 2.2).

Enterprise customer

ISV and development community

[ —

Virtual infrastructure 1

1

- |

ﬂi:g) e
Storage

1

SERERE Software

Network
Consolidated IDC fabric

Server Storage

Fig. 2.2 IDC cloud

The IDC uses the main Data Center to serve customers in its sister sites. The
new cloud computing center will enable this IDC to pay for fixed or usage-based
changeable services according to credit card bill. In the future, the management
scope of this hosting center expand to even more data centers in Europe.

2.6.1.7 The Influence of Cloud Computing in 3G Era

Ever since 3G services are launched by the major communication operators, the sim-
ple voice and information service can no longer meet the growing requirements of
users. The 3G data services have become the focus of competition among operators.
Many operators have introduced some specialized services. And with the growth of
3G clients and the expansion and improvement of 3G networks, operators have to
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provide more diversified 3G services to survive in the fierce market competition.
Cloud can be used as a platform to provide such value added services.

In this 3G era, mobile TV, mobile securities and data backup will all become
critical businesses. Huge amounts of videos, images, and documents are to be stored
in data centers so that users can download and view them at any time, and they can
promote interaction. Cloud computing can effectively support this kind of business
requirements, and get maximal storage with limited resources. Besides, it can also
search and provide the resources that are needed to users promptly to meet their
needs.

After the restructuring of operators, the businesses of leading service providers
will all cover fixed network and mobile service, and they may have to face up to
fierce competition in 3G market. Cloud computing can support unified monitoring
and dynamic deployment of resources. So, during the business consolidation of the
operators, the cloud computing platform can deploy necessary resources in time to
support business development, and respond quickly to market requirements to help
operators to gain larger market share.

The 3G-enabled high bandwidth makes it easier and quicker to surf Internet
through mobile phones and it has become a critical application of 3G technolo-
gies. Cloud computing makes it compatible among different equipments, software
and networks, so that the customers can access the resources in the cloud through
any kinds of clients.

2.6.2 Case Study — Cloud Computing for Software Parks

The traditional manufacturing industry has helped to maintain economic growth
in previous generations, but it has also brought along a host of problems such as
labor market deterioration, huge consumption of energy resources, environmental
pollution, and ever-more drive towards lower cost. As an emerging economy begins
its social transformation, software outsourcing has gained an edge compared with
traditional manufacturing industry: on one hand, it can attract and develop top-level
talent to enhance the technical level and competitive power of a nation; on the other
hand, it can also prompt the smooth structural transformation to a sustainable and
green service industry, thereby ensuring continuous prosperity and endurance even
in difficult times.

As such, software outsourcing has become a main business line for many emerg-
ing economies to ramp up their service economy, based on economies of scale and
affordable costs. To reach this goal, software firms in these emerging economies
need to conform their products and services to international standards and absorb
experiences from developed nations to enhance the quality of their outsourcing
services. More importantly, good policy support from the government and nec-
essary infrastructures are critical components in the durability of these software
outsourcing firms.

The IT infrastructure is surely indispensable for software outsourcing and soft-
ware businesses. To ensure the success of software outsourcing, there are two
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prerequisites: a certification standard of software management which is of inter-
national level (such as CMM Level 5), and an advanced software designing,
programming and testing pipeline, namely the software development platform of
data center. The traditional data center only put together all the hardware devices of
the enterprise, leading to the monopolization of some devices by a certain project
or business unit. This would create huge disparity within the system and can’t guar-
antee the quality of applications and development. Besides, it would result in cost
increase and unnecessary spending and in the long term undermine the enterprise’s
competitive power in the international market of software outsourcing. Furthermore,
when a new project is put on the agenda, it would take a long time to prepare for
and address the bottleneck of the project caused by the traditional IT equipments.

To pull the software enterprises out of this dilemma, IBM firstly developed
a brand-new management mode for software developing environment: the man-
agement and development platform of “cloud computing”. The platform was
constructed with the aid of the accumulated experience of IBM itself in the field
of software outsourcing service and data center management. The valuable experi-
ence from the long-term cooperation with other software outsourcing powers is also
taken into consideration. This platform is a new generation of data center manage-
ment platform. Compared with traditional data center, it has outstanding technical
advantages.

Below is the schematic diagram of the relationship between Cloud Computing
platform and software outsourcing ecosystems (Fig. 2.3):

Firstly, the platform can directly serve as a data service center for software out-
sourcing companies in the Software Park and neighboring enterprises. As soon as
a software outsourcing order is accepted, the company can turn to the manage-
ment and development platform of “cloud computing” to look for IT resources
suitable for use, the process of which is as simple and convenient as booking
hotel via Internet. Besides, by relying on IBM’s advanced technology, the cloud
computing platform is able to promote unified administrative standard to ensure
the confidentiality, security, stability and expandability of the platform. That is to
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Software Development
and Test Platform
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Fig. 2.3 Cloud computing platform and software outsourcing ecosystems
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say, thanks to its brand effect, the platform developed by the software demon-
stration plot is up to international advanced level, and could thereby enhance
the service level of software outsourcing in the entire park. The final aim is
to measure up to international standards and to meet the needs of international
and Chinese enterprises. Meanwhile, a platform of unified standard can lower IT
maintenance costs and raise the response speed for requirements, making possi-
ble the sustainable development of the Software Park. Lastly, the management and
development platform of cloud computing can directly support all kinds of appli-
cations and provide enterprise users with various services including outsourcing
and commercial services as well as services related to academic and scientific
researches.

The following are the benefits brought to the outsourcing services companies
and outsourcing demonstration plot of Wuxi government by the management and
development platform of cloud computing:

(1) For outsourcing service companies which apply cloud computing platform:

e An advanced platform with unified standard is provided and the quality is
guaranteed;

e IT management becomes easier and the costs of developing products is
greatly lowered;

e Response speed for business demand is enhanced and expandability
is ensured;

e Existing applications and newly-emerged data-intensive applications are
supported;

e Miscellaneous functions for expediting the speed of innovation is also
provided for outsourcing service companies, colleges and universities and
research institutes.

(2) Below are the advantages brought to the outsourcing demonstration plot of
Wuxi government through the application of cloud computing platform:

e The government can transform from a supervision mode to a service mode
which is in favor of attracting investments;

e [t is conducive to environmental protection and the build-up of a harmonious
society;

e It can support the development of innovative enterprises and venture compa-
nies.

Detailed information about the major functions and technical architectures of
the management and development platform of Cloud Computing is introduced as
below:
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2.6.2.1 Cloud Computing Architecture

The management and development platform of Cloud Computing is mainly
composed of two functional sub-platforms: outsourcing software research and
development platform and operation management platform.

e Outsourcing software research and development platform: an end-to-end soft-
ware development platform is provided for the outsourcing service companies in
the park. In terms of functions, the platform generally covers the entire software
developing lifecycle including requirement, designing, developing and testing
of the software. It helps the outsourcing service companies in establishing a
software developing procedure that is effective and operable.

e Operation management platform: according to the outsourcing service company’s
actual demand in building the research and development platform, as well as the
practical situation of the software and hardware resources distribution in data cen-
ter, the platform provides automatic provisioning services on demand of software
and hardware resources. Also, management on resources distribution is based on
different processes, posts and roles and resource utilization report will also be
provided.

Through the cooperative effect of the two platforms mentioned above, the man-
agement and development platform of “cloud computing” could fully exert its
advantage. The construction of outsourcing software research and development
platform can be customized according to different project needs (e.g., games devel-
opment platform, e-business development platform, etc), which can show the best
practices of IBM’s outsourcing software development services. And the operation
management platform can provide supporting functions such as management on
the prior platform, as well as operation and maintenance, and rapid configuration.
It is also significant in that it can reduce the workload and costs of operation and
management. Unlike the handmade software research and development platform,
it is both time-saving and labor-saving, and it is not that easy to make mistakes
in it.

2.6.2.2 Outsourcing Software Research and Development Platform

The outsourcing software research and development at the enterprise level have to
put an emphasis on the cooperation and speed of software development. It man-
ages to combine the software implantation with verification, so as to ensure the high
quality of software and shorten the period of development. The program is targeted
at and suitable for different types of outsourcing research and development compa-
nies with a demand for code development cooperation and document management.
The detailed designing of the program varies according to different enterprise needs
(Fig. 2.4).
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Fig. 2.4 Software outsourcing services platform

As can be seen in the chart, the primary construction of the outsourcing software
research and development platform consists of the construction of 4 sub-platforms:

Requirement architecture management platform
Quality assurance management platform

Quality assurance management supporting platform
Configuration and changes management platform

The integrated construction and operation of these four sub-platforms cover the
entire developing lifecycle of requirement, designing, developing and testing of the
software. They are customer-oriented and are featured by high quality, and good
awareness of quality prevention. With the help of these four sub-platforms, the out-
sourcing service companies can manage to establish a software development process
with high efficiency and operability.

2.6.3 Case Study — an Enterprise with Multiple Data Centers

Along with China’s rapid economic growth, the business of one state-owned
enterprise is also gearing up for fast expansion. Correspondingly, the group has
increasingly higher demand for the supporting IT environment. How can the group
achieve maximum return on its IT investment? For the IT department, on one hand
is repetitive and time-consuming work of system operation and management; while
there is an increasingly higher demand from the managers to support the company’s
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business and raise its competitive power and promote business transformation.
Faced with this problem, this enterprise is now searching for solutions in Cloud
Computing.

Enterprise Resources Plan (ERP) plays an important role as supporting the entire
business in the company. The existing EAR system is not able to apply automatic
technology. Repeated, manual work accounts for the majority of the system main-
tenance operation, which leads to lower efficiency and higher pressure on the IT
system maintenance operation. Meanwhile, on the technical level, it lacks of tech-
nology platform to perform the distribution, deployment, as well as state control and
recycle of system resources. As a result, the corresponding information resources
management is performed through traditional manual work, which is in contradic-
tion with the entire information strategy of the company. The specifics are listed as
below:

e The contradiction between the increasing IT resources and limited human
resources

e The contradiction between automatic technology and traditional manual work

e The effectiveness and persistence of resources information (including configura-
tion information)

The company has invested a lot in information technology. It has not only con-
structed the ERP system for the management and control of enterprise production,
but also upgraded the platform, updated host computer and improved IT manage-
ment in infrastructure. In a word, the SAP system is of great significance in the IT
system of Sinochem Group.

The implementation of Cloud Computing platform has helped to solve the
problems faced by the IT department in this company.

2.6.3.1 Overall Design of the Cloud Computing Platform in an Enterprise

The Cloud Computing Platform mainly is related to three discrete environments of
the company’s data centers: the training, development/test and the disaster recovery
environment. These systems involved in cloud computing are respectively located
in Data Center A, Datacenter B and the disaster center in Data Center C. It shows
the benefits of Cloud Computing virtualization crossing physical sites. See the
following Fig. 2.5:

Combined with the technical characteristics of the Cloud Computing plat-
form and the application characteristics of the ERP system in the company, the
construction project has provided the following functions:

e The installation and deployment of the five production systems of ERP

e The automatic deployment of hardware: logical partition and distribution of
hardware resources.

e The installation and recovery of the centralized AIX operating system

e Display of system resource usage: CPU/memory/disk usage.
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2.6.4 Case Study: Cloud Computing Supporting SaaS

By adopting cloud computing solutions, a telco can address the IT challenges faced
by SMEs. Thanks to the services provided by the Blue Cloud system, VNTT has
provided the customers with IBM Lotus Foundation and WebSphere Portal Express
business OA service based on Redhat, CentOS and Windows platform. Besides,
VNTT also provides customers with email services, file sharing and Web server
that are always ready for use. For better internal and external communication, these
enterprises need only one portal to rent the portal server based on IBM WebSphere
Portal.

By applying Cloud Computing as the underlying infrastructure, a telecommu-
nications company can provide its customers with a larger scale of IT services,
including infrastructure hosting, collaborative platform, applications, process and
information service; meanwhile, it can also ensure data security, convenience of
access and the easy management of the environment. In this instance, Cloud will
provide a strong technical infrastructure support as well as an effective combination
with business model innovation (Fig. 2.6).

2.7 Conclusion

With Cloud Computing as a new way to consume IT services, we can be much more
flexible and productive in utilizing dynamically allocated resources to create and to
operate. Cloud will continue to evolve as the foundation for the future Internet where
we will be interconnected in a web of content and services.



Chapter 3
Key Enabling Technologies for Virtual Private
Clouds

Jeffrey M. Nick, David Cohen, and Burton S. Kaliski Jr.

Abstract The concept of a virtual private cloud (VPC) has emerged recently as a
way of managing information technology resources so that they appear to be oper-
ated for a single organization from a logical point of view, but may be built from
underlying physical resources that belong to the organization, an external service
provider, or a combination of both. Several technologies are essential to the effective
implementation of a VPC. Virtual data centers provide the insulation that sets one
organization’s virtual resources apart from those of other organizations and from the
underlying physical infrastructure. Virtual applications collect those resources into
separately manageable units. Policy-based deployment and policy compliance offer
a means of control and verification of the operation of the virtual applications across
the virtual data centers. Finally, service management integration bridges across the
underlying resources to give an overall, logical and actionable view. These key
technologies enable cloud providers to offer organizations the cost and efficiency
benefits of cloud computing as well as the operational autonomy and flexibility to
which they have been accustomed.

3.1 Introduction

It is becoming relatively commonplace for organizations to outsource some or all
of their IT operations to an external “cloud” service provider that offers specialized
services over the Internet at competitive prices. This model promises improved total
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cost of ownership (TCO) through the leverage of large-scale commodity resources
that are dynamically allocated and shared across many customers. The problem
with this model to date is that organizations have had to give up control of the
IT resources and functions being outsourced. They may gain the cost efficiencies of
services offered by the external provider, but they lose the autonomy and flexibility
of managing the outsourced IT infrastructure in a manner consistent with the way
they manage their internal IT operations.

The concept of a virtual private cloud (VPC) has emerged recently (Cohen,
2008; Wood, Shenoy, Gerber, Ramakrishnan, & Van der Merwe, 2009; Extend Your
IT Infrastructure with Amazon Virtual Private Cloud, http://aws.amazon.com/vpc/)
as answer to this apparent dilemma of cost vs. control. In a typical approach,
a VPC connects an organization’s information technology (IT) resources to a
dynamically allocated subset of a cloud provider’s resources via a virtual pri-
vate network (VPN). Organizational IT controls are then applied to the collective
resources to meet required service levels. As a result, in addition to improved
TCO, the model promises organizations direct control of security, reliability and
other attributes they have been accustomed to with conventional, internal data
centers.

The VPC concept is both fundamental and transformational. First, it pro-
poses a distinct abstraction of public resources combined with internal resources
that provides equivalent functionality and assurance to a physical collection
of resources operated for a single organization, wherein the public resources
may be shared with many other organizations that are also simultaneously
being provided their own VPCs. Second, the concept provides an actionable
path for an organization to incorporate cloud computing into its IT infras-
tructure. Once the organization is managing its existing resources as a private
cloud (i.e., with virtualization and standard interfaces for resource manage-
ment), the organization can then seamlessly extend its management domain to
encompass external resources hosted by a cloud provider and connected over
a VPN.

From the point of view of the organization, the path to a VPC model is
relatively straightforward. In principle, it should be no more complicated, say,
than the introduction of VPNs or virtual machines into the organization’s IT
infrastructure, because the abstraction preserves existing interfaces and service
levels, and isolates the new implementation details. However, as with intro-
duction of any type of abstraction, the provider’s point of view is where the
complexities arise. Indeed, the real challenge of VPCs is not whether organi-
zations will embrace them once they meet organizational IT requirements, but
how to meet those requirements — especially operational autonomy and flexibil-
ity — without sacrificing the efficiency that motivated the interest in the cloud to
begin with.

With the emergence of VPCs as a means to bring cloud computing to organiza-
tions, the next question to address is: What are the key technologies cloud providers
and organizations need to realize VPCs?



3 Key Enabling Technologies for Virtual Private Clouds 49
3.2 Virtual Private Clouds

A cloud, following NIST’s definition that has become a standard reference (Mell
& Grance, 2009), is a pool of configurable computing resources (servers, networks,
storage, etc.). Such a pool may be deployed in several ways, as further described in
Mell and Grance (2009):

A private cloud operated for a single organization;

A community cloud shared by a group of organizations;
A public cloud available to arbitrary organizations; or
A hybrid cloud that combines two or more clouds.

The full definition of a private cloud given in Mell and Grance (2009) is

Private cloud. The cloud infrastructure is operated solely for an organization. It may be
managed by the organization or a third party and may exist on premise or off premise.

The definition suggests three key questions about a cloud deployment:
. Who uses the cloud infrastructure?

. Who runs the infrastructure?
3. Where is the infrastructure?

o =

The distinction among private, community, public, and hybrid clouds is based
primarily on the answer to the first question. The second and third questions are
implementation options that may apply to more than one deployment model. In
particular, a cloud provider may run and/or host the infrastructure in all four cases.

Although NIST’s definition does not state so explicitly, there is an implication
that the cloud infrastructure refers to physical resources. In other words, the com-
puting resources in a private cloud are physically dedicated to the organization; they
are used only (i.e., “solely”) by that organization for a relatively long period of time.
In contrast, the computing resources in a public or community cloud are potentially
used by multiple organizations over even a short period of time.

The physical orientation of the definition motivates the concept of a virtual pri-
vate cloud, which, following the usual paradigm, gives an appearance of physical
separation, i.e., extending (Mell & Grance, 2009):

Virtual private cloud (VPC). The cloud infrastructure appears as though it is operated solely
for an organization. It may be managed by the organization or a third party and may exist
on premise or off premise — or some combination of these options.

In other words, a VPC offers the function of a private cloud though not necessar-
ily its form. The VPC’s underlying, physical computing resources may be operated
for many organizations at the same time. Nevertheless, the virtual resources pre-
sented to a given organization — the servers, networks, storage, etc. — will satisfy the
same requirements as if they were physically dedicated.
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The possibility that the underlying physical resources may be run and/or hosted
by a combination of the organization and a third party is an important aspect of the
definition, as was first articulated by R. Cohen in a May 2008 blog posting (Cohen,
2008) that introduced the VPC concept:

A VPC is a method for partitioning a public computing utility such as EC2 into quarantined
virtual infrastructure. A VPC may encapsulate multiple local and remote resources to appear
as a single homogeneous computing environment bridging the ability to securely utilize
remote resources as part of [a] seamless global compute infrastructure.

Subsequent work has focused on a specific implementation profile where the
VPC encompasses just the resources from the public cloud. Wood et al. in a June
2009 paper (Wood, Shenoy, Gerber, Ramakrishnan, & Van der Merwe, 2009) write:

A VPC is a combination of cloud computing resources with a VPN infrastructure to give
users the abstraction of a private set of cloud resources that are transparently and securely
connected to their own infrastructure.

Likewise, Amazon describes its virtual private cloud in a January 2010
white paper (Extend Your IT Infrastructure with Amazon Virtual Private Cloud,
http://aws.amazon.com/vpc/) as “an isolated portion of the AWS cloud,” again
connected to internal resources via a VPN.

In both Wood et al. and Amazon, a VPC has the appearance of a private cloud,
so meets the more general definition stated above. However, the implementation
profile imposes the limitation that the physical resources underlying the VPC are
hosted and run by a cloud provider. In other words, the answer to the second and
third questions above is “external.” Although internal resources, e.g., the “enterprise
site” of Wood et al., are connected to the VPC over the VPN, they are not part of the
VPC proper.

This article maintains R. Cohen’s broader definition because the cloud for which
an organization will be responsible, ultimately, will encompass most or all of its
resources, not just the external portions. The primary VPC implementation profile
considered here is therefore one in which the underlying resources are drawn from a
public cloud and an internal, private cloud — or, in other words, from a hybrid cloud
that combines the two (see Fig. 3.1) (Note 1). How those resources are managed in
order to meet organizational IT requirements is the focus of the sections that follow.

Note

1. The implementation profile is most relevant to medium to large enterprises
that already have substantial internal IT investments and are likely to maintain
some of those resources while incorporating IT services from an external cloud
provider. For enterprises that outsource all IT to a cloud provider, the imple-
mentation profile would include only the external resources. The key enabling
technologies for VPCs are relevant in either case.
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Fig. 3.1 Primary virtual
private cloud (VPC)
implementation profile: VPC
is built from the hybrid of an
external public cloud and an
internal private cloud
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3.3 Virtual Data Centers and Applications

An organization’s objective for its use of IT in general is to realize certain
information-based business processes while conforming with applicable laws and
regulations, and optimizing the cost/benefit tradeoff. Whether implemented with
cloud computing or with conventional IT, the organization’s high-level IT objec-
tives are the same. The promise of cloud computing is that over time, organizations
may be able to meet those objectives with an ever improving cost/benefit tradeoff.

3.3.1 Virtual Data Centers

In conventional IT, data centers provide a convenient way of organizing resources
into locally connected pools. The locality provides an opportunity for common
physical oversight and improved network performance among resources within
the data center. In effect, a data center can be viewed as a local container of IT
resources that can be managed together from a resource, security, and/or information
perspective.

Virtualization, as a general paradigm, insulates resources and functionality from
the underlying physical implementation, with the consequent advantage that vir-
tual resources can be dynamically allocated to an organization without concern (by
the organization) for the underlying physical implications. Moreover, the virtual
resources can readily be migrated from one physical environment to another — for
instance, between the organization’s data centers and data centers operated by a
cloud provider.

From this perspective, virtual resources “in the cloud” are, in principle, location-
and container-independent. However, for the same reasons as in conventional IT,
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containers and location-type attributes may play an important role in practice,
because organizations will continue to call for the performance advantages that
locality brings, and it will be convenient to manage resources as sets. Accordingly,
just as data centers are the basic, high-level unit of management in conventional IT,
it is reasonable to expect that virtual data centers — the first key enabling technology
for VPCs — will be the basic, high-level unit of resource management (Notes 1, 2):

Virtual data center (VDC). A pool of virtual resources that appear in terms of performance to
be locally connected, and can be managed as a set.

For practical reasons, a VDC will typically be implemented based on a single,
underlying physical data center; the apparent local connectivity would otherwise be
difficult to achieve (although there are recent high-performance network technolo-
gies that do span physical data centers). The limitation is only in one direction, of
course: A given physical data center can host more than one VDC. Furthermore,
a data center operated by a public cloud provider may offer VDCs to multiple
organizations, or henceforth, fenants, so the underlying computing environment is
multi-tenant.

In addition to local connectivity, the placement of resources in a particular
location may offer geographical advantages such as proximity to certain users or
energy resources, or diversity of applicable laws and regulations. The placement of
resources across multiple, independent locations can also help improve resilience.
Such geographical aspects may be “virtualized” by policy-based management (see
Section 3.4 below). The VDC (and/or its resources) would be selected so that they
achieve the desired properties, with the actual location left to the implementation
(although certain properties may only be achievable in a specific geography).

In addition, VDCs, like physical data centers, may vary in terms of the capabili-
ties they offer, such as:

1. The types of virtual resources that are supported;

2. The cost, performance, security, and other attributes of those resources (and of
the VDC in general), including the types of energy used; and

3. Specific resources that are already present and may be inconvenient to obtain
elsewhere, such as large data sets or specialized computing functionality.

Rather than presenting the appearance of a physical data center as it actually is,
the VDC abstraction can show a data center as it ideally should be. As a result, a
VDC offers the opportunity for simplified, unified management from the point of
view of the organization using it.

Given the VDC as a basic unit of management, the primary VPC implementation
profile may be further refined as one in which the virtual resources are organized
into the combination of
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e One or more private VDCs hosted by a cloud provider; and
e One or more internal, private VDCs hosted by the organization

The cloud provider’s VDCs would be based on scalable partitions of the cloud
provider’s public data centers; the internal VDCs could be simply the virtualization
of the organization’s existing data centers, or perhaps again scalable partitions. In
either case, the modifier private, is essential: In order for the resulting VPC to appear
as though it is operated solely for an organization, the component VDCs must be so
as well.

Building a VPC thus decomposes into the problem of building a private VDC,
or, expanding the definition, a pool of virtual resources that appears to be locally
connected and to be operated for a single organization. The specific translation
between a private VDC and underlying physical resources is, of course, a matter
of implementation, but several technologies clearly will play a key role, including,
obviously, virtualization and resource management, as well as, possibly, encryption
of some form (Note 3).

With this first enabling technology in place, an organization using a VPC will
have at its disposal some number of private VDCs or containers into which it may
deploy resources, as well as the possibility of obtaining additional VDCs if needed.
How those containers are used is the subject of the next enabling technology.

Notes

1. Cloud computing can be realized without the data center metaphor, for instance
in settings where local connectivity is not important, such as highly distributed
or peer-to-peer applications. The focus here is on the typical enterprise use cases,
which are data-center based.

2. Virtualization, in principle, gives an appearance of privacy in the sense that if
all tenants interact only through the VDC abstraction, then, by definition, they
cannot access one another’s resources (assuming of course that in the physical
counterpart whose appearance is being presented, they cannot do so). Thus, vir-
tualization of servers, networks, storage, etc., alone is arguably sufficient to build
a VDC (as far as appearances; resource management is also needed to handle
scheduling, etc.).

There are two main problems with this position. First, there may be paths out-
side the abstraction by which parties may interact with the underlying resources.
At the very least, the infrastructure operator will have such access, both phys-
ical and administrative. Second, there may be paths within the abstraction that
inadvertently enable such interaction, whether due to errors or to side channels
that are not completely concealed. This introduces the possibility of malevo-
lent applications or mal-apps that target other tenants sharing the same public
computing environment. The cloud cartography and cross-VM information leak-
age techniques of Ristenpart, Tromer, Shacham, and Savage (2009) are recent
examples.
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It is worth noting that comparable vulnerabilities are already being dealt with
by conventional data centers through a range of security controls, from encryp-
tion to behavioral analysis. The difference in cloud computing is not as much
the nature of the vulnerabilities, as the number of potential adversaries “in the
camp.” A base and adaptive set of security controls will be essential for the
abstraction, robustly, to maintain its assurances, while applications implement
additional controls above the abstraction just as they would if running directly
on physical infrastructure. A good example of such an additional control is the
VPN (which is visible to applications in the private VDC model).

Trusted computing (Mitchell, 2005) may also play a role in private VDCs
by providing a root of trust with respect to which tenants may verify the
integrity of their resources. The integration of trusted computing and virtualiza-
tion is explored more fully in projects such as Terra by Garfinkel, Pfaff, Chow,
Rosenblum, and Boneh (2003) and Daonity (now continued as Daoli) (Chen,
Chen, Mao, & Yan, 2007).

3.3.2 Virtual Applications

Information-based processes in conventional IT are realized by various applications
involving interactions among collections of resources. The resources supporting a
given application may run in a single data center or across multiple data centers
depending on application requirements.

Continuing the analogy with conventional IT, one may expect that virtual appli-
cations — the second key enabling technology — will be the basic, high-level unit of
resource deployment:

Virtual application. A collection of interconnected virtual resources deployed in one or more
virtual data centers that implement a particular IT service.

A virtual application consists not only of the virtual machines that implement the
application’s software functionality, but also of the other virtual resources needed to
realize the application such as virtual networks and virtual storage. In this sense, a
virtual application extends the concept of a virtual appliance (Sapuntzakis & Lam,
2003), which includes the complete software stack (virtual machines and operating
system, with network interfaces) implementing a single service, to encompass the
set of services supporting the application.

Just as a VDC can show a data center in a more ideal form, a virtual application
can present the appearance of an application as it ideally should be. Today, security,
resource management, and information management are typically enforced by the
operating system and application stack, which makes them complex and expensive
to implement and maintain. With the simplified, unified management provided by
the virtual application abstraction and encapsulation of application components in
virtual machine containers, the virtual application container becomes a new control
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point for consistent application management. Instead of orchestrating each resource
individually, an organization can operate on the full set in concert, achieving the
equivalent of “one click” provisioning, power on, snapshot, backup, and so on.

The primary VPC implementation profile may be now refined again as one in
which virtual applications consisting of virtual resources run across one or more
VDCs (see Fig. 3.2) (Note 1).

==
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The Open Virtualization Format (OVF, 2009) recently standardized by the Data
Management Task Force offers a convenient way to specify collections of virtual
machines. Through metadata, the interconnections between those machines and
their dependencies on other resources such as networks and storage may also be
expressed, supporting full virtual applications as defined here. In addition to sev-
eral commercial products, the specification is also supported in the Open-OVF open
source project (open-ovf.sourceforge.net).

An organization using a VPC with the first two enabling technologies now intro-
duced will be able to use its private VDCs to deploy virtual applications. The
next enabling technologies address the contract between those applications and the
VPC that enables the automatic assembly of components to meet organizational IT
objectives while maintaining flexibility for optimization.

Note

1. The interplay between VDCs and virtual applications is an important aspect of
meeting organizational IT requirements with a VPC, which do depend in some
cases on (possibly relative) location, as noted in Section 3.3.1. Thus, in addition
to the primary role of virtual applications in enabling portability between clouds,
virtual applications may also be viewed as a way to enable effective deployment
within a cloud by describing the desired relationships among virtual resources.

3.4 Policy-Based Management

Over time, a VPC will be populated with resources supporting virtual applications
running at various VDCs. Those resources will be deployed and assembled with the
ultimate intent of meeting the organizational IT requirements. This is the essence of
the “contract,” formal or otherwise, between an organization and the VPC.

The role of such a contract can be viewed in two parts: putting its terms into
practice, and checking that the practice is correct.
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3.4.1 Policy-Based Deployment

Consider an organization that wants to deploy an e-commerce application with cer-
tain objectives for security, performance, and business continuity. In a conventional
data center, that application might be implemented as the combination of resources
starting with a web server and a database. A firewall would be added to meet the
security objectives, and a load-balancer to assign transactions to additional web
servers as needed to meet the performance objectives. To address the business conti-
nuity objectives, a second instance of these components might be placed in another
data center, coordinated with the first through a business continuity manager.

Suppose further that the organization also wants to deploy a customer rela-
tionship management (CRM) application with similar service objectives. That
application might likewise be implemented as a combination of web servers,
databases, firewalls, load-balancers, and so on, across two data centers.

Now, consider what happens when the organization decides to deploy these appli-
cations in a VPC (under some “contract,” per the comments above). Following the
model in Section 3.3.2, each application would be deployed as a collection of virtual
resources. The VPC would thus be hosting the combination of the sets of resources
for the two applications: two sets of virtual web servers, two virtual databases, two
firewalls, two load-balancers, etc., and this collection would be repeated across two
VDCs.

Deploying an application in a VPC as just described has some advantages, such
as dynamic allocation of resources and economies of scale. However, such a process
is really no more than a migration of components from one environment to another,
or what could also be called a literal virtualization. Infrastructure sprawl in the data
center translates directly into virtual sprawl, with as many components to manage
as before, just consolidated onto fewer servers, and arranged in a more flexible way.

Cloud computing environments can improve this situation by organizing com-
ponents and capabilities into searchable lists of virtual applications and resources
that can readily be deployed. By selecting services from an offering catalog and
inventory, rather than imposing entirely unique choices, an organization can take
advantage of optimizations that the cloud provider may already have put in place.
The load-balancer would be a good example. Instead of each application contribut-
ing its own load-balancer, the VPC would offer one itself for use by multiple
applications.

Once an application designer knows that load-balancing will be available, he or
she no longer needs to specify a virtual application as a combination of, say, two
web servers and a load-balancer. Instead, the virtual application may be expressed
as the combination of a single web server (and other functional components) and a
policy that the VPC should create additional instances of the web server and balance
transactions among them to maintain a specified performance level. This policy has
the further benefit that the application may automatically be scaled beyond the two
instances originally specified in a literal counterpart to the data center version.

Load-balancing is one instance of a general pattern: Applications are designed
as a combination of functionality and qualities relating to service-level agreements



3 Key Enabling Technologies for Virtual Private Clouds 57

(SLAs). These qualities, sometimes also called, “ilities” (from the common suffix of
scalability, availability, etc.), generally are implemented with quite similar compo-
nents across different applications, like load-balancers, firewalls, business continuity
managers, and so on. They are therefore natural candidates for services supporting
multiple applications in a VPC.

A simple formula illustrates both the pattern and the problem. A typical applica-
tion is constructed first by building a base application that meets some functional
requirements, then adding “ilities” that address the non-functional ones. The result-
ing full application is then virtualized and deployed in the VPC. This pattern may
be summarized as follows:

 buid base add “ilities” full
functionality application ~— application
virtualize

l@e I

full

virtual
application

Given only the full virtual application, the VPC will likely have a problem rec-
ognizing the “ilities,” and therefore, managing them or optimizing their delivery, as
much as it is difficult to optimize object code without the original source. However,
given some of that original source, the VPC will have much more opportunity to
add value. Consequently, the preferred model for application deployment in a VPC
is for the computing environment to add “ilities” as part of deployment.

The pattern now becomes the following:

. . build base
functionality — application
virtualize
l@ |
base add “lities” full
virtual B virtual
application application

The “ilities” may be added by configuring the base virtual application or by
deploying additional services. Following the VDC model in Section 3.3.2, policy
may also be realized according to the placement of virtual resources into specific
VDCs, e.g., where local connectivity, proximity to certain users, independence, etc.
are required.

The paradigm may be summarized as the third key enabling technology, policy-
based deployment:

Policy-based deployment. The assembly of application components in a computing environ-
ment according to predefined policy objectives.
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Although policy-based deployment can also be applied in other types of clouds
(as well as in data centers), the technology is particularly important for VPCs
because of their primary use case: organizations that need to meet well-defined IT
objectives.

Shifting the introduction of some policy features from development to deploy-
ment doesn’t necessarily make deployment easier, and in fact may make it harder,
as Matthews, Garfinkel, Hoff, and Wheeler (2009) observe, due to number of
stakeholders and administrators potentially involved. Automation is essential to sim-
plifying deployment, and a well-defined language for expressing policy is essential
to automation. The separation of “ilities” from functionality is therefore necessary
but not sufficient. In addition, the “ilities” must be expressed as machine-readable
rules that the computing environment can implement. In Matthews et al. (2009),
such rules take the form of a Virtual Machine Contract, defined as:

A Virtual Machine Contract is a complex declarative specification of a simple question,
should this virtual machine be allowed to operate, and if so, is it currently operating within
acceptable parameters? (Matthews et al., 2009)

A specification like OVF can be employed to carry contracts and other policy
information so that they travel along with the virtual machines, and, more generally,
virtual applications, to which the conditions apply.

With automated policy-based deployment in place, an organization is able to
specify to the VPC its expectations as far as security, performance and other SLAs,
and the VPC can then, automatically, optimize its operations toward those objec-
tives. The military expression, “You get what you inspect, not what you expect,”
motivates the challenge addressed by the next enabling technology: How to verify
that the terms of the contract with the VPC are actually met.

3.4.2 Policy Compliance

In whatever computing environment an organization chooses to deploy an appli-
cation, the organization will need some evidence that the application is running
as intended. This evidence serves both the organization’s own assurances and
those of auditors or customers. Even if no malice is involved, the environment’s
optimizations may only approximate the intended result.

Policy objectives are particularly difficult to achieve in a multi-application setting
because of the potential for resource contention. A physical computing resource, for
instance, may reliably meet the computational performance objectives for the one
application it supports, but when that resource interacts with another resource, the
presence of network traffic from other applications may make the communication
performance unpredictable. Network reservation schemes and similar approaches
for storage play an important role in meeting SLAs for this reason. There may also
be opportunities for different applications, by design, to operate in a complementary
fashion that reduces the contention.
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A multi-tenant computing environment such as a public cloud hosting VPCs for
multiple organizations introduces further complexities. As with any Internet service,
tenants are affected by one another’s behavior, which can be unpredictable. Because
there is no direct opportunity for negotiation among different tenants with respect
to the underlying computing environment (in principle, they cannot even detect one
another), any contention must be resolved by the cloud provider itself.

The objectives of different tenants are not necessarily aligned with one another,
so in addition to the basic resource contention, there may also be contention among
optimization strategies. The potential for interference is another strong motiva-
tion for placing the policy services within the computing environment rather than
individual applications.

Finally, the tenants’ objectives are not necessarily aligned with those of the public
cloud provider. Although serving customers will presumably be the first priority of
a successful cloud provider, staying in business is another, and there is a definite
motivation for implementing further optimizations that cut costs for the provider
without necessarily increasing benefit for any of the tenants (Note 1).

Given the difficulty of meeting policy requirements perfectly across multiple
applications and tenants, it becomes particularly important for the VPC to provide,
and the tenant to receive, some information about the extent to which those require-
ments are met, or not, at various points in time. This leads to the fourth key enabling
technology, policy compliance.

Policy compliance. Verification that an application or other IT resource is operating according
to predefined policy objectives.

Per the separation of “ilities” from based functionality discussed in Section 3.4.1,
it is reasonable to expect that policy compliance itself will eventually be considered
as just another service to be added to the application when deployed in the VPC
(Note 2). Such a capability goes hand in hand with policy-based deployment: It
will be much easier for a VPC to gather appropriate evidence from resources it
has already assembled with policy objectives in mind, than to have to discover the
objectives, the resources, and the evidence after the fact.

As far as the evidence itself, for precisely the purpose of evaluating performance,
many IT resources are instrumented with activity logs that record transactions and
other events. For instance, a physical network router may keep track of the source,
destination, size, timestamp and other metadata of the packets it transfers (or is
unable to transfer); a physical storage array may record similar information about
the blocks it reads and write. With appropriate interfaces, the virtual environment
can leverage these features to gather evidence of policy compliance. For example,
I/0 tagging embeds virtual application identifiers as metadata in physical requests,
with the benefit that the identifiers are then automatically included in activity logs
for later analysis by the virtual environment with minimal impact on performance
(Note 3).
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The collection of system logs from physical computing, networking, and storage
resources, containing information about virtual applications and resources and their
activities, provides an information set from which policy compliance evidence may
be derived. This information set, keyed by the virtual application identifiers and
related quantities, enables distributed application context and correlation — in effect,
a virtual view of the activity of the virtual application, across the VPC.

Constructing such a view, especially from heterogeneous unstructured system
logs that were designed only for local visibility, and management interfaces that
were intended only for local control, depends on a fifth and final enabling technol-
ogy, one that responds to the question: How to bring all this information together
intelligently?

Notes

1. A related situation where a cloud storage provider may lose some portion of
tenants’ data as a result of its own performance optimizations (or actual malice)
is explored in Juels and Kaliski (2007) and Bowers, Juels, and Oprea (2009),
which also propose mechanisms for detecting and recovering from such loss
before it reaches an irreversible stage. The detection mechanism may be viewed
as an example of policy compliance for stored data.

2. If an application includes built-in policy compliance and the components
involved are portable, then the compliance will continue to function in the
VPC. Such verification provides a helpful checkpoint of the service levels
achieved within a given computing environment. However, as more applica-
tions with built-in policy compliance are deployed, the VPC will see a sprawl
of application-specific compliance components. This is another motivation for
building policy compliance into the VPC.

3. 1/O tagging offers the additional benefit of enabling virtualization-aware phys-
ical resource managers to enforce policies based on the virtual identifiers. This
is a promising area for further exploration, particularly for methods to resolve
the contention, as observed above, among policies for different applications and
tenants.

3.5 Service-Management Integration

Virtual data centers, the first of the enabling technologies, may be viewed as provid-
ing insulation that sets one organization’s virtual resources apart from those of other
organizations, and from the underlying physical resources. Virtual applications,
the second, collect those resources into separately manageable units. Policy-based
deployment and policy compliance, the third and fourth, offer a means of control
and verification of the operation of the virtual applications across the VDCs. All four
rest on a fifth technology: a more basic foundation that bridges across underlying
boundaries, one oriented toward seamless integration.
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Recall the original implementation profile for the VPC, per Section 3.2: a hybrid
of an internal, private cloud and a public cloud. Following Section 3.3, the VPC
provides the appearance of some number of VDCs, some drawn from the internal
cloud, some from the public cloud. Throughout Section 3.4, this VPC is essentially
viewed as seamless, which it is in appearance (the exposure of multiple VDCs is
an architectural feature). Thus, Section 3.4 can speak of deploying an application
into the VPC, collecting evidence from the VPC, and so on, without regard to the
fact that the deployment and collection ultimately involve interactions with physical
resources, and more significantly, that these physical resources are in multiple data
centers operated by at least two different entities.

The fundamental challenge for satisfaction of policy-based management in a
VPC is how to enable such seamless interaction between resource, service and pol-
icy management components: across data center infrastructure boundaries, and then
across federated service provider boundaries.

Such bridges are not easy to build, because the various management interfaces —
like the local logs in Section 3.4.2 — were designed for separate purposes. At the
physical layer, they may use different names for the same entity or function, employ
incompatible authentication and access control systems, and express the same con-
ditions in different ways. The information the organization and the VPC need is
available, but is not immediately useful without some translation. Moreover, that
translation is not simply a matter of converting between formats, but, in effect,
virtualizing the interfaces to the management metadata across the borders of the
underlying management component.

The fifth and final key enabling technology, service-management integration,
addresses this last challenge:

Service-management integration. The translation of heterogeneous management information
from separate domains into an overall, logical and actionable view.

Service-management integration is a special case of the broader technology of
information integration, which is concerned, similarly, with translating of federating
general information from multiple domains. The special case of VPCs is concerned
in particular with federating three things: (1) the underlying infrastructure into one
virtual computing environment, (2) identities interacting with the resources in the
environment, and (3) information about the resources.

By its nature, service-management integration for VPCs is amenable to an event-
ing paradigm where the basic unit of information is an event published by one entity
in the system, and consumed by another. This paradigm is a good match for a policy
compliance manager that is interested in the content of multiple physical logs, as that
evidence accumulates. It also provides a deployment manager with a current view
of the underlying resources as they continually change. Further, the architectural
separation between publisher and subscriber lends itself to the physical separation
and distribution of participating elements across data center and cloud federation
boundaries.
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The intermediation between publisher and consumer can be achieved through
a messaging system. As a dedicated communication layer for events, such a sys-
tem provides a federated information delivery “backplane” that bridges multiple
management domains (e.g., internal data centers, cloud provider data centers) into
a single service-oriented architecture, translating back and forth among the secu-
rity and management languages of the various domains. Events published in one
domain can be consumed in another according to various subscription rules or fil-
ters; the policy compliance manager for a particular tenant, for instance, will only
be interested in (and should only know about) events related to that tenant’s virtual
applications.

The messaging system can implement its translations through a set of adapters,
informed by an understanding of the connections among the identities and events in
the different domains. The system’s learning of those connections can occur auto-
matically, or it may require manual intervention, and in some cases it may need to
be augmented with a significant amount of computation, for instance to search for
correlated events in the different domains. In a cloud computing environment, the
resources for such computation will not be hard to find. (How to balance between the
use of resources to make the overall environment more efficient, versus allocating
them directly to tenants, is another good question for further exploration.)

3.6 Conclusions

This article started with the simple premise that cloud computing is becoming more
important to organizations, yet, as with any new paradigm, faces certain challenges.

One of the challenges is to define a type of cloud computing most appropriate for
adoption. A virtual private cloud built with IT resources from both the organization’s
own internal data centers and a cloud provider’s public data centers has been offered
as a preferred implementation profile. To ensure privacy, i.e., the appearance that the
cloud is operated solely for the organization, certain additional protections are also
needed.

Another challenge is to make good use of the collective resources. A literal type
of virtualization where applications are basically ported from a data center to the
VPC would realize some of benefits, but the greater potential comes from enabling
the VPC itself to optimize the assembly of applications. The starting point for that
advance is the separation of functionality from policy within the specification of a
virtual application so that policy requirements can be met in a common and therefore
optimized way by the VPC. Commonality of policy management also enables the
VPC to verify that policies are met.

Finally, information infrastructure rests as the foundation of realizing a VPC.
Indeed, virtualization is all about turning resources into information. The better
the VPC can engage with that information, rising from the shadows of the private
data center past and the public cloud present, the more effectively organizations can
move into the promise of the virtual private cloud future.
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Chapter 4
The Role of Networks in Cloud Computing

Geng Lin and Mac Devine

4.1 Introduction

The confluence of technology advancements and business developments in
Broadband Internet, Web services, computing systems, and application software
over the past decade has created a perfect storm for cloud computing. The “cloud
model” of delivering and consuming IT functions as services is poised to fun-
damentally transform the IT industry and rebalance the inter-relationships among
end users, enterprise IT, software companies, and the service providers in the IT
ecosystem (Armbrust et al., 2009; Lin, Fu, Zhu, & Dasmalchi, 2009).

In the center of the cloud delivery and consumption model is the network
(Gartner Report, 2008). The network serves as the linkage between the end users
consuming cloud services and the provider’s data centers providing the cloud ser-
vices. In addition, in large-scale cloud data centers, tens of thousands of compute
and storage nodes are connected by a data center network to deliver a single-purpose
cloud service. How do network architectures affect cloud computing? How will net-
work architecture evolve to better support cloud computing and cloud-based service
delivery? What is the network’s role in security, reliability, performance, and scal-
ability of cloud computing? Should the network be a dumb transport pipe or an
intelligent stack that is cloud workload aware?

This chapter focuses on the networking aspect in cloud computing and shall pro-
vide insights to these questions. The chapter is organized as follows. In Section 4.2,
we discuss the different deployment models for cloud services — private clouds, pub-
lic clouds, and hybrid clouds — and their unique architectural requirements on the
network. In Sections 4.3 and 4.4, we focus on the hybrid cloud model and discuss

G. Lin (X)
IBM Alliance, Cisco Systems, San Francisco, CA, USA
e-mail: gelin@cisco.com

M. Devine
IBM Corporation, Research Triangle Park, NC, USA
e-mail: wdevine @us.ibm.com

B. Furht, A. Escalante (eds.), Handbook of Cloud Computing, 65
DOI 10.1007/978-1-4419-6524-0_4, © Springer Science+Business Media, LLC 2010



66 G. Lin and M. Devine

the business opportunities associated with hybrid clouds and the network architec-
ture that enables hybrid clouds. In many ways, the hybrid cloud network architecture
encompasses the characteristics of the networks for both public and private clouds.
In Section 4.5, we discuss our conclusions and highlight the directions for future
work in cloud-enabling network architectures.

4.2 Cloud Deployment Models and the Network

The IT industry is attracted by the simplicity and cost effectiveness represented
by the cloud computing concept that IT capabilities are delivered as services in a
scalable manner over the Internet to a massive amount of remote users. While the
purists are still debating the precise definition of cloud computing, the IT indus-
try views cloud computing — an emerging business model — as a new way to solve
today’s business challenges. A survey conducted by Oliver Wyman (Survey, private
study for IBM) in November 2008 with business executives from different enter-
prises identified “reduce capital cost,” “reduce IT management cost,” “accelerate
technology deployment,” and “accelerate business innovation” as the main business
benefits for cloud computing. Figure 4.1 shows the detailed survey results.

Despite the benefits promised by cloud computing, the IT industry also sees that
significant innovation and improvement on technologies and operations governance
are needed to enable broad adoption of cloud services. Chief concerns are secu-
rity and performance issues. Take security as an example, while it is acceptable for
individual consumers to turn to Amazon Elastic Compute Cloud (EC2) and Simple
Storage Services (S3) for on-demand compute resources and storage capacities, it is
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a different matter for a bank to store its customer information in a third-party owned
cloud.

Based on the differences in the deployment model, cloud services can be
delivered in three principal ways: public cloud, private cloud, and hybrid cloud.

4.2.1 Public Cloud

A public cloud refers to a cloud service delivery model in which a service provider
makes massively scalable IT resources, such as CPU and storage capacities, or soft-
ware applications, available to the general public over the Internet. Public cloud
services are typically offered on a usage-based model. Public cloud is the first
deployment model of cloud services to enter the IT industry’s vocabulary. The
concept of public clouds has clearly demonstrated the long-term potential of the
cloud computing model and lit up the imagination of the industry and the research
community.

There are many public cloud service providers in place today, offering services
ranging from infrastructure-as-as-service, to development-platform-as-a-service, to
special purpose application-as-a-services. Amazon EC2, Force.com, and Google
App Engine, are among some of the best known examples of public clouds, but
the market now bristles with competition. See the survey by InformationWeek
(Babcock, 2009a, 2009b, 2009¢) on the major public cloud service providers for
a detailed analysis on their services, pricing models, platforms supported, etc.

While the public cloud offers a clean, infrastructure-less model for end users
to consume IT services, and intrigues the research community with its disruptive
nature, migrating the majority of today’s IT services, such as the various business
applications in an enterprise environment (e.g. insurance applications, health care
administration, bank customer account management, the list goes on and on), to a
public cloud model is not feasible. Data security, corporate governance, regulatory
compliance, and performance and reliability concerns prohibit such IT applications
to be moved out of the “controlled domains” (i.e. within the corporate firewalls),
while the public cloud infrastructure, government regulation, and public acceptation
continue to improve.

4.2.2 Private Cloud

Private cloud, in contrast, represents a deployment model where enterprises (typ-
ically large corporations with multi-location presence) offer cloud services over
the corporate network (can be a virtual private network) to its own internal users
behind a firewall-protected environment. Recent advances in virtualization and data
center consolidation have allowed corporate network and datacenter administra-
tors to effectively become service providers that meet the needs of their customers
within these corporations. Private clouds allow large corporations to benefit from
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the “resource pooling” concept associated with cloud computing and their very own
size, yet in the mean time addressing the concerns on data security, corporate gov-
ernance, government regulation, performance, and reliability issues associated with
public clouds today.

Critics of private clouds point out that these corporations “still have to buy, build,
and manage clouds” and as such do not benefit from lower up-front capital costs and
less hands-on management, essentially “lacking the economic model that makes
cloud computing such an intriguing concept.” While these criticisms are true from
a purist’s point view, private clouds are a viable and necessary deployment model
in the overall adoption of cloud computing as a new IT model. We believe that
without large corporations embracing it, cloud computing will never become a main
stream computing and IT paradigm (for this one can refer to the previous example of
Grid Computing). Private cloud represents an enabling as well as a transitional step
towards the broader adoption of IT services in public clouds. As the public cloud
infrastructure, government regulation, and public acceptance continue to improve,
more and more IT applications will be first offered as services in a private cloud
environment and then migrated to the public cloud. The migration path of Email
service in a corporation environment — from initially multiple departmental email
servers, to today’s single corporate-level “email cloud”, to a public email cloud —
offers an exemplary representation. While purists might argue in black and white
terms, we believe private cloud as a viable deployment model for cloud computing
will exist for a long time and deserves the attention from both business and research
communities.

4.2.3 Hybrid Cloud

While public and private clouds represent the two ends of the cloud computing
spectrum in terms of ownership and efficiency of shared resources — and each is
finding acceptance in accordance to the services offered and customer segments
targeted — a third deployment model of cloud computing, the hybrid cloud model
that blends the characteristics of public and private clouds, is emerging.

A hybrid cloud is a deployment model for cloud services where an organization
provides cloud services and manages some supporting resources in-house and has
others provided externally. For example, an organization might store customer data
within its own data center and have a public cloud service, such as Amazon’s EC2,
to provide the computing power in an on-demand manner when data processing is
needed. Another example is the concept of “public cloud as an overflow for private
clouds” where an IT manager does not need to provision its enterprise private cloud
for the worst-case workload scenario (doing so will certainly defeat the economics
of a private cloud), but to leverage a public cloud for overflow capacities to move
less-mission-critical workloads on and off premise dynamically and transparently
to accommodate business growth or seasonal peak load demands. One can find dif-
ferent variations of the “overflow” scenario, such as “follow-the-sun” operations in
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a global organization where workloads are moved around the globe based on the
time zones of the working teams. Architecturally, a hybrid cloud can be considered
a private cloud extending its boundary into a third party cloud environment (e.g. a
public cloud) to obtain additional (or non-mission critical) resources in a secure and
on-demand manner.

Adoption of cloud services is a gradual process: Enterprise IT (which represents
the majority of IT industry spending and service consumption) needs a migration
path to move today’s on-premise IT applications to the services offered by pub-
lic cloud providers through a utility model. As such, the hybrid cloud represents a
prevalent deployment model. Large enterprises often have substantial investments
in the IT infrastructure required to provide resources in house already. Meanwhile,
organizations need to keep sensitive data under their own control to ensure security
and compliance to government regulations. The tantalizing possibility offered by
the hybrid cloud model — enterprise IT organizations managing an internal cloud
that meshes seamlessly with a public cloud, which charges on a pay-as-you-go
basis — embodies the promise of the amorphous term cloud computing. To enable
hybrid clouds, virtualization, seamless workload mobility, dynamic provisioning of
cloud resources, and transparent user experience, are among the critical technical
challenges to be resolved.

4.2.4 An Overview of Network Architectures for Clouds

There are three principal areas in which the network architecture is of importance
to cloud computing: (1) a data center network that interconnects the infrastructure
resources (e.g. servers and storage devices) within a cloud service data center, (2) a
data center interconnect network that connects multiple data centers in a private,
public, or hybrid cloud to supporting the cloud services, (3) the public Internet
that connect end users to the public cloud provider’s data centers. The last area
has mostly to do with today’s telecommunications network infrastructure, and is a
complex topic by itself from the architectural, regulatory, operational and regional
perspectives. It is beyond the scope of this chapter. We shall focus only on the first
two areas (data center network and the data center interconnect network) in this
chapter.

4.2.4.1 Data Center Network

Cloud providers offer scalable cloud services via massive data centers. In such
massive-scale data centers, Data Center Network (DCN) is constructed to connect
tens, sometimes hundreds, of thousands of serves to deliver massively scalable cloud
services to the public. Hierarchical network design is the most common architecture
used in data center networks. Figure 4.2 show a conceptual view of a hierarchical
data center network as well as an example of mapping the reference architecture to
a physical data center deployment.
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Fig. 4.2 Data center network architecture

The access layer of a data center network provides connectivity for server
resource pool residing in the data center. Design of the access layer is heavily
influenced by the decision criteria such as server density, form factor, and server
virtualization that can result in higher interface count requirements. The commonly
used approaches for data center access layer connectivity are end-of-row (EoR)
switch, fop-of-rack (ToR) switch, and integrated switch (typically in the form of
blade switches inside a modular blade server chassis). Another form of the inte-
grated switch is the embedded software switch in a server end point (see Virtual
Ethernet Switch in this section). Each design approach has pros and cons, and is
dictated by server hardware and application requirements.

The aggregation layer of the data center provides a consolidation point where
access layer switches are connected providing connectivity between servers for
multi-tier applications, as well as connectivity across the core of the network to the
clients residing within the campus, WAN, or Internet. The aggregation layer typ-
ically provides the boundary between Layer-3 routed links and Layer-2 Ethernet
broadcast domains in the data center. The access switches are connected to the
aggregation layer using 802.1Q VLAN trunks to provide the capability of con-
necting servers belonging to different VLANs and IP subnets to the same physical
switch.

The primary function of the core layer in a data center network is to provide
highly available, high performance Layer-3 switching for IP traffic between the
data center and the Telco’s Internet edge and backbone. In some situations, mul-
tiple geographically distributed data centers owned by a cloud service provider
may be connected via a private WAN or a Metropolitan Area Network (MAN).
For such environments, expanding Layer 2 networks across multiple data cen-
ters is a better architecture design (readers can refer to Section 4.2 “Data Center
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Interconnect Network™ for details). In other situations, the traffic has to be carried
over the public Internet. The typical network topologies for this kind of geograph-
ically distributed data centers is Layer-3 Peering Routing between the data center
core switches. By configuring all links connecting to the network core as point-to-
point Layer-3 connections, rapid convergence around any link failure is provided,
and the control plane of the core switches is not exposed to broadcast traffic
from end node devices or required to participate in STP for Layer-2 network loop
prevention.

The evolution of networking technology to support large-scale data centers is
most evident at the access layer due to rapid increase of number of servers in a
data center. Some research work (Greenberg, Hamilton, Maltz, & Patel, 2009; Kim,
Caesar, & Rexford, 2008) calls for a large Layer-2 domain with a flatter data center
network architecture (2 layers vs. 3 layers). While this approach may fit a homoge-
nous, single purpose data center environment, a more prevalent approach is based
on the concept of switch virtualization which allows the function of the logical
Layer-2 access layer to span across multiple physical devices. There are several
architectural variations in implementing switch virtualization at the access layer.
They include Virtual Blade Switch (VBS), Fabric Extender, and Virtual Ethernet
Switch technologies. The VBS approach allows multiple physical blade switches to
share a common management and control plane by appearing as a single switching
node (Cisco Systems, 2009d). The Fabric Extender approach allows a high-density,
high-throughput, multi-interface access switch to work in conjunction with a set
of fabric extenders serving as “remote I/O modules” extending the internal fabric
of the access switches to a larger number of low-throughput server access ports
(Cisco Systems, 2008). The Virtual Ethernet Switch is typically software based
access switch integrated inside a hypervisor at the server side. These switch vir-
tualization technologies allow the data center to support multi-tenant cloud services
and provide flexible configurations to scale up and down the deployment capacities
according to the level of workloads (Cisco Systems, 2009a, 2009¢).

While we have discussed the general design principles for the data center net-
work in a massively scalable data center, some cloud service providers, especially
some public cloud providers, have adopted a two-tier data center architecture to
optimize data center cost and service delivery (Greenberg, Lahiri, Maltz, Patel, &
Sengupta, 2008). In this architecture, the creation and delivery of the cloud service
are typically accomplished by two tiers of data centers — a front end tier and a back
end tier — with significant difference in their sizes. Take the Web search service as
an example, the massive data analysis applications (e.g., computing the web search
index) is a natural fit for the centralized mega data centers (measured by hundreds of
thousands of servers) while the highly interactive user front-end applications (e.g.
the query/response process) is a natural fit for geographically distributed micro data
centers (measured by hundreds or thousands of servers) each placed close to major
population centers to minimize network latency and delivery cost. The hierarchi-
cal data center network architecture is scalable enough to support both mega data
centers and micro data centers with the same design principles discussed in this
section.
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4.2.4.2 Data Center Interconnect Network

Data center interconnect networks (DCIN) are used to connect multiple data centers
to support a seamless customer experience of cloud services. While a conventional,
statically provisioned virtual private network can interconnect multiple data centers
and offer secure communications, to meet the requirements of seamless user expe-
rience for cloud services (high-availability, dynamic server migration, application
mobility), the DCIN for cloud services has emerged as a special class of networks
based on the design principle of Layer 2 network extension across multiple data
centers (Cisco Systems, 2009b). For example, in the case of server migration (either
in a planned data center maintenance scenario or in an unplanned dynamic applica-
tion workload balancing scenario) when only part of the server pool is moved at any
given time, maintaining the Layer 2 adjacency of the entire server pool across multi-
ple data centers as opposed to renumbering IP addresses of servers is a much better
solution. The Layer 2 network extension approach, on one hand, is a must from
business-continuity perspective; on the other hand, is cost effective from the opera-
tions perspective because it maintains the same server configuration and operations
policies.

Among the chief technical requirements and use cases for data center intercon-
nect networks are data center disaster avoidance (including data center maintenance
without downtime), dynamic virtual server migration, high-availability clusters, and
dynamic workload balancing and application mobility across multiple sites. These
are critical requirements for cloud computing. Take the application mobility as an
example. It provides the foundation necessary to enable compute elasticity — a key
characteristics of cloud computing — by providing the flexibility to move virtual
machines between different data centers.

Figure 4.3 shows a high level architecture for the data center interconnect
network based on the Layer 2 network extension approach.

Since the conventional design principle for Layer 2 network is to reduce its diam-
eter to increase performance and manageability (usually limiting it to the access
layer, hence advocating consolidating servers to a single mega data center and lim-
iting the Layer 2 connectivity to intra data center communications), there are many
areas of improvement and further research needed to meet the needs of data center
interconnect networks. Listed below are some of the key requirements for Layer 2
network extension across multiple data centers.

End-to-End Loop Prevention

To improve the high availability of the Layer 2 VLAN when it extends between
data centers, this interconnection must be duplicated. Therefore, an algorithm must
be enabled to control any risk of a Layer 2 loop and to protect against any type of
global disruptions that could be generated by a remote failure. An immediate option
to consider is to leverage Spanning Tree Protocol (STP), but it must be isolated
between the remote sites to mitigate the risk of propagating unwanted behaviors
such as topology change or root bridge movement from one data center to another.
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WAN Load Balancing

Typically, WAN links are expensive, so the uplinks need to be fully utilized, with
traffic load-balanced across all available uplinks. A mechanism to dynamically
balance workloads at the virtual machine level is an area of research.

Core Transparency

The LAN extension solution needs to be transparent to the existing enterprise core
network, if available, to reduce any effect on operations. This is more common in
the private cloud or hybrid cloud environments than in a public cloud.

Encryption

The requirement for LAN extension cryptography is increasingly prevalent, for
example, to meet the needs for cloud services and for federal and regulatory
requirements.

4.3 Unique Opportunities and Requirements for Hybrid Cloud
Networking

IT industry is in the midst of a transformation. Globalization, explosion of
business information, unprecedented levels of interconnectedness and dynamic
collaboration among different business assets both within a corporation and across
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multiple corporations (on-demand supply chain as an example) require today’s
enterprise businesses to move to an IT infrastructure that is truly economical, highly
integrated, agile and responsive.

As discussed in the previous section, the hybrid cloud model provides a seamless
extension to an enterprise’s private IT infrastructure by providing elastic compute,
storage and network services in a cost-effective manner. This seamless extension
could allow enterprises to streamline business processes, be more responsive to
change, have flexible collaboration with business partners, leverage more rapidly
the emerging technologies that address growing business challenges and increase
competitiveness by delivering more services to customers.

To achieve this vision of business agility that hybrid clouds promise to enable,
significant challenges lay ahead. Challenging requirements for hybrid cloud deploy-
ments in terms of deployment and operational costs, quality of service delivery,
business resiliency and security must be addressed. Hybrid clouds will need to sup-
port a large number of “smart industry solution workloads” — business applications
in the form of smart transportation solutions, smart energy solutions, smart supply
chain solutions, etc. In these “smart industry solutions,” large amount of business
information and control data will be collected, analyzed and reacted upon in a time-
constrained fashion across multiple tiers of cloud centers; workloads and data will
be dynamically shifted within a hybrid cloud environment. This will require signif-
icant improvements to today’s network. Using the metaphor of a bridge design, we
can describe these requirements in three categories — the foundation, the span and
the superstructure.

4.3.1 Virtualization, Automation and Standards — The Foundation

Virtualization, automation and standards are the pillars of the foundation of all good
cloud computing infrastructures. Without this foundation firmly in place across the
servers, storage and network layers, only minimal improvements on the adoption
of cloud services can be made; conversely, with this foundation in place, dramatic
improvements can be brought about by “uncoupling” applications and services from
the underlying infrastructure to improve application portability, drive up resource
utilization, enhance service reliability and greatly improve the underlying cost struc-
tures. However, this “uncoupling” must be done harmoniously such that the network
is “application aware” and that the application is “network aware”. Specifically, the
networks — both the data center network and the data center interconnect network
(and in the long run the public core network) — need to embrace virtualization and
automation services. The network must coordinate with the upper layers of the cloud
(i.e. the application workloads — both physical and virtual) to provide the needed
level of operational efficiency to break the lock between IT resources in today’s
client-server model.

This transformation to a dynamic infrastructure which is “centered” on service
delivery not only requires enterprise IT to transcend the daily IT break-and-fix
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routine but to create a paradigm shift within the user community toward a shared
environment with repeatable, standardized processes. Centralized delivery of a stan-
dardized set of services instead of the distributed delivery of a highly customized set
of services must be accompanied by new levels of flexibility via self-service mech-
anisms. In other words, easier and faster access to services make the standardization
acceptable or even attractive to users since they sacrifice the ability to customize but
gain convenience and time.

There is also a strong need for open standards to enable interoperability and
federation across not only the individual layers of a private cloud behind an enter-
prise’s firewall but also when consuming public cloud based services. This type of
hybrid cloud environment allows scalable and flexible collaboration and global inte-
gration in support of evolving business model changes with clients (e.g. customer
relationship management) and partners (e.g. supply chain partners).

4.3.2 Latency, Bandwidth, and Scale — The Span

The span of the network requirements for latency, bandwidth and scale which are
needed to support traditional enterprise business applications and those needed to
support cloud based applications can be very wide. Accurate forecasting of the
quality of user experience and potential business impact for any network failure
is already a major challenge for IT managers and planners even for today’s tra-
ditional enterprise business applications. This challenge will become even more
difficult as businesses will depend increasingly on more high performance cloud
based applications which often have more variability than traditional enterprise
business applications.

Meeting this challenge is essential to the “quality of experience” required to get
the user community to accept a shared set of standardized services which are cloud
delivered. Without this acceptance, the transformation of today’s data center to a
private or hybrid cloud environment with the dynamic and shared infrastructure
needed for a reduced total cost of ownership will be much more difficult. Some
users may choose to “get around” IT by trying to leverage services from the public
cloud without the proper integration with existing IT and business processes which
can have significant negative impacts on their businesses.

“Quality of experience” for access to some cloud based applications and services
may require LAN-like performance to allow a portion of the user community to use
real-time information to respond instantaneously to new business needs and to meet
the demands of their customers. For these use cases, latency and bandwidth matter.
Furthermore, there does not have to be problems at any one hop in order for end
to end performance to be affected. Mild congestion at a number of hops can create
problems in latency and packet loss. Therefore, content distribution, optimized rout-
ing and application acceleration services are usually required especially for hybrid
cloud deployments with regional to global network connectivity.
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Other users may only want the ability to simply request a new service without
needing to know how or where it is built and delivered. It is not that the performance
is not important to these users. In fact, communication and application delivery
optimizations may still be required to increase the performance of applications and
data that must traverse the cloud. It is just that their main criterion for quality has
more to do with the ability to easily provision as many services as needed than it
is dependent on latency and bandwidth optimizations. For these use cases, the abil-
ity to easily provision system resources including network resources (physical or
virtual) is essential. It is also important to note that the two most prevailing tech-
niques to help server-side scaling, i.e. physical density and virtualization, both drive
an increased dependence on network integration.

For each user group and their corresponding use cases, the evolution to global-
scale service delivery may best be accomplished via a hybrid cloud environment.
The hybrid cloud can enable the visibility, control and automation needed to deliver
quality services at almost any scale by leveraging not only the private network but
also the public internet via managed network service providers.

Public clouds can be used for off-loading certain workloads. This off-load could
be so that the private network infrastructure can be available and optimized for other
latency and bandwidth sensitive workloads and/or for the provisioning of additional
services due to a shortage of available infrastructure on-premise. Application plat-
forms and tooling available on the public cloud can also be used to provide even
greater flexibility for development and test environments which are often the best
workloads for this type of off-loading. SaaS applications can also be consumed by
the user community within a hybrid cloud environment. Under the hybrid cloud
model, the consumption of public cloud services can be fully integrated with the
existing on-premise IT and business processes to maximize the return of investment
as well as ensure regulatory compliance.

4.3.3 Security, Resiliency, and Service Management — The
Superstructure

Like the superstructure which ensures the integrity of a bridge’s design, the elements
of cloud computing environment — security, resiliency and service management —
ensure the integrity of its design. Without these ‘“superstructure” elements the
value proposition associated with cloud computing will collapse and the economic
benefits promised by cloud computing will be just illusions.

For some workloads, compliance with industry regulations like HIPAA (Health
Insurance Portability and Accountability Act) and SOX (Sarbanes Oxley) require
businesses to keep complete control over the security of their data. While there is
much innovation happening for security within public clouds, the maturity level of
these technologies may not yet be at a level where security and regulatory compli-
ance can be guaranteed. However, even in these cases, an enterprise can still off-load
non sensitive/critical workloads onto a public cloud while using a private cloud to
ensure the needed SLAs for sensitive/critical workloads.
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The network plays a key role in the establishment of these regulatory compliant
clouds. Private WAN services must be enabled to provide the security needed for
the private portion of the cloud. If a hybrid cloud environment is being used then
the network must also be able to provide the federated connectivity and isolation
needed and support the proper level of encryption for VPN tunnels which will be
used by the public clouds to access data which remains behind a corporate firewall.
Although there are other cloud deployment options available for workloads which
do not have the need for the same level of compliance, networking connectivity
and security functions are still central for a successful deployment of these cloud
services.

Service management and automation also plays a critical role in hybrid clouds.
As cloud services continue to advance, it is more likely that in the future network-
ing services for cloud applications will be offered through an application-oriented
abstraction layer APIs, rather than in specific networking technologies. Within this
network architecture paradigm, modification and provisioning of network resources
can be made in a more automated and optimized manner via service management or
network self-adjustment. Specifically, these modifications can be made via operator-
initiated provisioning through service management systems to assert direct control
on network services, or via “smart” networking technologies which can also adapt
services in an autonomic or self-adjusting fashion. Furthermore, it is critical that
the network service management and the smart networking technologies are tightly
integrated with the overall management for the cloud service delivery so that the
changes required by the upper layers of the cloud “stack” in network resources can
be carried through by the network service management or self-adaptations in an
automated fashion.

Many of these “smart” networking technologies are focused on maximizing the
resiliency of cloud deployments in terms of the availability, performance and work-
load mobility. For example, application delivery networking services optimize the
flow of information and provide application acceleration by the classification and
prioritization of application, content and user access; virtual switching technol-
ogy provides an “abstraction” of the switching fabric and allows virtual machine
mobility.

As these “smart” networking technologies mature, their capabilities will extend
beyond the current capabilities for a single cloud to the “intra-cloud” as well as to the
“intercloud.” With this maturation, the hybrid cloud will provide unprecedented lev-
els of global interconnectedness for real time or near real time information access,
application-to-application integration and collaboration.

4.4 Network Architecture for Hybrid Cloud Deployments

Hybrid clouds play a key role in the adoption of cloud computing as the new gen-
eration IT paradigm. While the IT industry and the research community are still in
the early stage to understand the implementation technologies for hybrid clouds, a
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number of major functional components in the hybrid cloud network architecture
have been identified. Figure 4.4 shows a functional view of the network architecture
for hybrid clouds.

4.4.1 Cloud-in-a-Box

As large enterprises start to build their own private clouds and further expand them
into hybrid clouds, a significant need is to simplify the design, deployment, and
management of clouds. The traditional data center deployment model of having
separated physical devices focusing on server units, networking units, and storage
units presents a significant challenge. A new trend in the design and deployment of
private and hybrid clouds is the concept of “cloud-in-a-box.”

A cloud-in-a-box, sometimes also called a cloud cell, is a pre-integrated, pre-
packaged and self-contained service delivery platform that can be used easily
and quickly to implement private cloud centers. Physically, it is typically deliv-
ered in a single chassis containing multiple blades; some blades are computing
units, some switching units, and some storage units. They are interconnected by
a combination of a common backplane (e.g. a PCI-type backplane) and high-speed
converged Ethernet connections (e.g. 10G FCoE). From the networking perspective,
the switches that are pre-integrated into a cloud-in-a-box are typically the access
layer switches.

Software wise, a common hypervisor environment typically expands across
the computing units, the networking units, and storage units in a cloud-in-a-box
device. From the networking perspective, this requires a virtual Ethernet switch
to be embedded in the hypervisor. In the VMware environment, the VMware’s
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vNetwork Distributed Switch and Cisco’s Nexus 1000v virtual switch are the two
well known examples of hypervisor-embedded virtual Ethernet switches. On top
of the common virtualization layer, a service management application is typically
included to allow the management and automation of cloud services provision-
ing, accounting and billing, security, dynamic resource reallocation and workload
mobility. Furthermore, some of today’s purpose-built cloud-in-a-box platforms also
include a cloud service application to offer the specific cloud service. For example, a
development-and-test oriented cloud-in-a-box platform may pre-integrate and pre-
package a cloud-ready Integrated Development Environment (IDE) as part of the
product.

At the time of this chapter is written, there are a number of cloud-in-a-box prod-
ucts offered in the industry. See (VCEC, 2009; IBM Corporation, 2009) for further
information.

4.4.2 Network Service Node

Layer 4 network services play an important role in the network architecture for
hybrid clouds. Application firewalls ensure the secure transport of user data and
application workloads between the data centers in a hybrid cloud; server load bal-
ancers ensure the workloads distributed evenly or according to operations policies
both within a single data center and across multiple data centers; WAN accelerators
provide WAN optimization that accelerates the targeted cloud workloads over the
WAN, and ensure a transparent user experience regardless where the applications
reside.

While these Layer 4 services exist in today’s data center environments, the prolif-
eration of server virtualization in the cloud delivery model has created a significant
challenge to the traditional network service architecture, as the Layer 4 services now
need to be virtualization aware.

Visibility into virtual machine activity and isolation of server traffic becomes
more difficult when virtual machine-sourced traffic can reach other virtual machines
both within the same server and across the data center network and data center inter-
connect network. In the traditional access model, each physical server is connected
to an access port. Any communication to and from a particular server or between
servers goes through a physical access switch and any associated services such as a
firewall or a load balancer. But what happens when applications now reside on vir-
tual machines and multiple virtual machines reside within the same physical server?
It might not be necessary for traffic to leave the physical server and pass through
a physical access switch for one virtual machine to communicate with another. On
the other hand, application residing in a virtual machine can be “moved” to another
data center for load balancing. How to ensure the WAN accelerator to recognize
an application residing within a virtual machine and optimize the WAN treatment
for a virtual machine? Enforcing network policies in this type of environment can
be a significant challenge. A network service node is a logical or a physical unit
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that provides the layer-4 network services to support cloud service deployment. The
goal remains to provide many of the same network services and features used in the
traditional access layer in the new virtualization-aware access layer. We believe this
will be a fertile area for future research.

4.4.3 Data Center Network and Data Center Interconnect
Network

Data center network and data center interconnect network are described before. Due
to the length limitation of this chapter, we shall not expand beyond what has been
described in Sections 4.2.4.1 and 4.2.4.2.

4.4.4 Management of the Network Architecture

Management of the network architecture in a hybrid cloud is part of the overall
cloud management system. Key topics include the “physical” system management
of the network infrastructure in the hybrid cloud and the “virtualization” manage-
ment aspect that spans across the entire network path, starting from the virtual
Ethernet switch embedded in the Hypervisor, through the access and core switches
in the data center network, and across the data center interconnect network, as well
as the network service modules along the network path.

Virtualization brings a new dimension to the management architecture. Similar
to traditional “physical” system management, the network virtualization manage-
ment needs to dynamically provision, monitor and manage end-to-end network
resources and services between virtual machines in a cloud environment. In this
context, a way to express workloads, network resources and operation policies in a
virtualization-aware but hypervisor independent manner is the first step. Readers
interested in more details in this area can start from DMTFb (2009). Once this
is achieved, algorithms and systems can be developed to derive the network con-
figurations and resource allocation based on the requirements from the virtual
machine workloads. Similar to the “physical” system management, interoperabil-
ity between the systems (e.g. between management system and the network, and
between management systems) is an important requirement. For this purpose, com-
mon standards, open interfaces, common data model (management information
model) are key. Currently this is still a less coordinated area where a number of
standards bodies, including the Distributed Management Task Force (DMTF), the
Object Management Group (OMG), the Open Grid Forum (OGF), etc., are work-
ing on various “standards” for cloud management. This is an area that needs more
efforts to mature. Interested readers can start from DMTFa and Cloud Standards
Coordination, http://cloud-standards.org.
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4.5 Conclusions and Future Directions

As the next paradigm shift for IT industry, cloud computing is still in the early stage.
Just as the previous major IT paradigm shift — from centralized computing to dis-
tributed computing — has had tremendous impact on IP networking (and vice versa),
we see a similar impact with regard to cloud computing and the next generation net-
works. In many ways, supporting cloud computing represents a natural evolution for
the IP networking; we see the Layer 2 domain in the data center network becoming
wider, flatter and virtualization aware; we see the data center interconnect network
and Layer 4 network services becoming virtualization aware and self-adaptable to
security, performance and SLA constraints; we see virtual machine mobility and
cloud service elasticity not only within a single data center but also over metro net-
works or WAN across multiple data centers. As the IT industry creates and deploys
more cloud services, more requirements will be put on to the networks and more
intelligence will be implemented by the cloud-enabling network.

Our belief is that the hybrid cloud will emerge as the ideal cloud deployment
model for most enterprises since it blends the best of private and public clouds. The
networks play an extremely critical role in enabling hybrid cloud deployments. For
core services with critical business data, the private network within the hybrid cloud
can allow full control over network security, performance, management, etc. The
public side of the hybrid cloud provides the ability to extend an enterprise’s reach
to Internet deployed applications and services which can then be integrated with its
on-premise assets and business processes. We believe more cloud-enabling innova-
tions will occur in both data center networks and data center interconnect networks.
Furthermore, we believe the public Internet will embrace many of the capabili-
ties exhibited in today’s data center interconnect networks (and expand beyond).
Somewhat contrary to today’s loosely coupled IP networking architecture (with
respect to other IT assets — servers, storage, and applications) which was the resulted
from the distributed client server computing model, we believe the cloud computing
model will drive a more tightly integrated network architecture with other IT assets
Mell & Grance (October 2009).
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Chapter 5
Data-Intensive Technologies for Cloud
Computing

Anthony M. Middleton

5.1 Introduction

As aresult of the continuing information explosion, many organizations are drown-
ing in data and the resulting “data gap” or inability to process this information
and use it effectively is increasing at an alarming rate. Data-intensive comput-
ing represents a new computing paradigm (Kouzes, Anderson, Elbert, Gorton, &
Gracio, 2009) which can address the data gap using scalable parallel processing
to allow government, commercial organizations, and research environments to pro-
cess massive amounts of data and implement applications previously thought to
be impractical or infeasible. Cloud computing provides the opportunity for orga-
nizations with limited internal resources to implement large-scale data-intensive
computing applications in a cost-effective manner.

The fundamental challenges of data-intensive computing are managing and pro-
cessing exponentially growing data volumes, significantly reducing associated data
analysis cycles to support practical, timely applications, and developing new algo-
rithms which can scale to search and process massive amounts of data. Researchers
at LexisNexis believe that the answer to these challenges is a scalable, inte-
grated computer systems hardware and software architecture designed for parallel
processing of data-intensive computing applications. This chapter explores the
challenges of data-intensive computing and offers an in-depth comparison of com-
mercially available system architectures including the LexisNexis Data Analytics
Supercomputer (DAS) also referred to as the LexisNexis High-Performance
Computing Cluster (HPCC), and Hadoop, an open source implementation based
on Google’s MapReduce architecture.

Cloud computing emphasizes the ability to scale computing resources as needed
without a large upfront investment in infrastructure and associated ongoing opera-
tional costs (Napper & Bientinesi, 2009; Reese, 2009; Velte, Velte, & Elsenpeter,
2009). Cloud computing services are typically categorized in three models:
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(1) Infrastructure as a Service (laaS). Service includes provision of hardware and
software for processing, data storage, networks and any required infrastructure for
deployment of operating systems and applications which would normally be needed
in a data center managed by the user; (2) Platform as a Service (PaaS). Service
includes programming languages and tools and an application delivery platform
hosted by the service provider to support development and delivery of end-user
applications; and (3) Software as a Service (SaaS). Hosted software applications are
provided and managed by the service provider for the end-user replacing locally-run
applications with Web-based applications (Lenk, Klems, Nimis, Tai, & Sandholm,
2009; Levitt, 2009; Mell & Grance, 2009; Vaquero, Rodero-Merino, Caceres, &
Lindner, 2009; Viega, 2009).

Data-intensive computing applications are implemented using either the TaaS
model which allows the provisioning of scalable clusters of processors for data-
parallel computing using various software architectures, or the PaaS model which
provides a complete processing and application development environment including
both infrastructure and platform components such as programming languages and
applications development tools. Data-intensive computing can be implemented in a
public cloud (cloud infrastructure and platform is publicly available from a cloud
services provider) such as Amazon’s Elastic Compute Cloud (EC2) and Elastic
MapReduce or as a private cloud (cloud infrastructure and platform is operated
solely for a specific organization and may exist internally or externally to the orga-
nization) (Mell & Grance, 2009). IaaS and PaaS implementations for data-intensive
computing can be either dynamically provisioned in virtualized processing environ-
ments based on application scheduling and data processing requirements, or can be
implemented as a persistent high-availability configuration. A persistent configura-
tion has a performance advantage since it uses dedicated infrastructure instead of
virtualized servers shared with other users.

5.1.1 Data-Intensive Computing Applications

Parallel processing approaches can be generally classified as either compute-
intensive, or data-intensive (Skillicorn & Talia, 1998; Gorton, Greenfield, Szalay, &
Williams, 2008; Johnston, 1998). Compute-intensive is used to describe application
programs that are compute bound. Such applications devote most of their execu-
tion time to computational requirements as opposed to I/O, and typically require
small volumes of data. Parallel processing of compute-intensive applications typi-
cally involves parallelizing individual algorithms within an application process, and
decomposing the overall application process into separate tasks, which can then
be executed in parallel on an appropriate computing platform to achieve overall
higher performance than serial processing. In compute-intensive applications, mul-
tiple operations are performed simultaneously, with each operation addressing a
particular part of the problem. This is often referred to as functional parallelism
or control parallelism (Abbas, 2004).
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Data-intensive is used to describe applications that are I/O bound or with a need
to process large volumes of data (Gorton et al., 2008; Johnston, 1998; Gokhale,
Cohen, Yoo, & Miller, 2008). Such applications devote most of their processing
time to I/O and movement of data. Parallel processing of data-intensive applica-
tions typically involves partitioning or subdividing the data into multiple segments
which can be processed independently using the same executable application pro-
gram in parallel on an appropriate computing platform, then reassembling the results
to produce the completed output data (Nyland, Prins, Goldberg, & Mills, 2000).
The greater the aggregate distribution of the data, the more benefit there is in paral-
lel processing of the data. Gorton et al. (2008) state that data-intensive processing
requirements normally scale linearly according to the size of the data and are very
amenable to straightforward parallelization. The fundamental challenges for data-
intensive computing according to Gorton et al. (2008) are managing and processing
exponentially growing data volumes, significantly reducing associated data analy-
sis cycles to support practical, timely applications, and developing new algorithms
which can scale to search and process massive amounts of data. Cloud comput-
ing can address these challenges with the capability to provision new computing
resources or extend existing resources to provide parallel computing capabilities
which scale to match growing data volumes (Grossman, 2009).

5.1.2 Data-Parallelism

Computer system architectures which can support data-parallel applications are
a potential solution to terabyte and petabyte scale data processing requirements
(Nyland et al., 2000; Ravichandran, Pantel, & Hovy, 2004). According to Agichtein
and Ganti (2004), parallelization is considered to be an attractive alternative for pro-
cessing extremely large collections of data such as the billions of documents on the
Web (Agichtein, 2004). Nyland et al. (2000) define data-parallelism as a compu-
tation applied independently to each data item of a set of data which allows the
degree of parallelism to be scaled with the volume of data. According to Nyland
et al. (2000), the most important reason for developing data-parallel applications is
the potential for scalable performance, and may result in several orders of magni-
tude performance improvement. The key issues with developing applications using
data-parallelism are the choice of the algorithm, the strategy for data decomposition,
load balancing on processing nodes, message passing communications between
nodes, and the overall accuracy of the results (Nyland et al., 2000; Rencuzogullari
& Dwarkadas, 2001). Nyland et al. (2000) also note that the development of a data-
parallel application can involve substantial programming complexity to define the
problem in the context of available programming tools, and to address limitations of
the target architecture. Information extraction from and indexing of Web documents
is typical of data-intensive processing which can derive significant performance ben-
efits from data-parallel implementations since Web and other types of document
collections can typically then be processed in parallel (Agichtein, 2004).
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5.1.3 The “Data Gap”

The rapid growth of the Internet and World Wide Web has led to vast amounts of
information available online. In addition, business and government organizations
create large amounts of both structured and unstructured information which needs
to be processed, analyzed, and linked. Vinton Cerf of Google has described this as
an “Information Avalanche” and has stated “we must harness the Internet’s energy
before the information it has unleashed buries us” (Cerf, 2007). An IDC white paper
sponsored by EMC estimated the amount of information currently stored in a dig-
ital form in 2007 at 281 exabytes and the overall compound growth rate at 57%
with information in organizations growing at even a faster rate (Gantz et al., 2007).
In another study of the so-called information explosion it was estimated that 95%
of all current information exists in unstructured form with increased data process-
ing requirements compared to structured information (Lyman & Varian, 2003). The
storing, managing, accessing, and processing of this vast amount of data represents
a fundamental need and an immense challenge in order to satisfy needs to search,
analyze, mine, and visualize this data as information (Berman, 2008). In 2003,
LexisNexis defined this issue as the “Data Gap”: the ability to gather information is
far outpacing organizational capacity to use it effectively.

Organizations build the applications to fill the storage they have available, and
build the storage to fit the applications and data they have. But will organizations
be able to do useful things with the information they have to gain full and inno-
vative use of their untapped data resources? As organizational data grows, how
will the “Data Gap” be addressed and bridged? Researchers at LexisNexis believe
that the answer is a scalable computer systems hardware and software architecture
designed for data-intensive computing applications which can scale to processing
billions of records per second (BORPS) (Note: the term BORPS was introduced by
Seisint, Inc. in 2002. Seisint was acquired by LexisNexis in 2004). What are the
characteristics of data-intensive computing systems and what system architectures
are available to organizations to implement data-intensive computing applications?
Can these capabilities be implemented using cloud computing to reduce risk and
upfront investment in infrastructure and to allow a pay-as-you-go model? This
chapter will explore those issues and offer a comparison of commercially available
system architectures.

5.2 Characteristics of Data-Intensive Computing Systems

The National Science Foundation believes that data-intensive computing requires
a “fundamentally different set of principles” than current computing approaches
(NSF, 2009). Through a funding program within the Computer and Information
Science and Engineering area, the NSF is seeking to “increase understanding of
the capabilities and limitations of data-intensive computing.” The key areas of
focus are:
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e Approaches to parallel programming to address the parallel processing of data on
data-intensive systems

e Programming abstractions including models, languages, and algorithms which
allow a natural expression of parallel processing of data

e Design of data-intensive computing platforms to provide high levels of reliability,
efficiency, availability, and scalability.

e Identifying applications that can exploit this computing paradigm and determin-
ing how it should evolve to support emerging data-intensive applications.

Pacific Northwest National Labs has defined data-intensive computing as “cap-
turing, managing, analyzing, and understanding data at volumes and rates that push
the frontiers of current technologies” (Kouzes et al., 2009; PNNL, 2008). They
believe that to address the rapidly growing data volumes and complexity requires
“epochal advances in software, hardware, and algorithm development” which can
scale readily with size of the data and provide effective and timely analysis and pro-
cessing results. The HPCC architecture developed by LexisNexis represents such an
advance in capabilities.

5.2.1 Processing Approach

Current data-intensive computing platforms use a “divide and conquer” parallel
processing approach combining multiple processors and disks in large computing
clusters connected using high-speed communications switches and networks which
allows the data to be partitioned among the available computing resources and pro-
cessed independently to achieve performance and scalability based on the amount
of data (Fig. 5.1). Buyya, Yeo, Venugopal, Broberg, and Brandic (2009) define a
cluster as “a type of parallel and distributed system, which consists of a collection
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of inter-connected stand-alone computers working together as a single integrated
computing resource.” This approach to parallel processing is often referred to as
a “shared nothing” approach since each node consisting of processor, local mem-
ory, and disk resources shares nothing with other nodes in the cluster. In parallel
computing this approach is considered suitable for data processing problems which
are “embarrassingly parallel” , i.e. where it is relatively easy to separate the prob-
lem into a number of parallel tasks and there is no dependency or communication
required between the tasks other than overall management of the tasks. These types
of data processing problems are inherently adaptable to various forms of distributed
computing including clusters and data grids and cloud computing.

5.2.2 Common Characteristics

There are several important common characteristics of data-intensive computing
systems that distinguish them from other forms of computing. First is the principle
of collocation of the data and programs or algorithms to perform the computa-
tion. To achieve high performance in data-intensive computing, it is important to
minimize the movement of data (Gray, 2008). In direct contrast to other types of
computing and supercomputing which utilize data stored in a separate repository
or servers and transfer the data to the processing system for computation, data-
intensive computing uses distributed data and distributed file systems in which data
is located across a cluster of processing nodes, and instead of moving the data, the
program or algorithm is transferred to the nodes with the data that needs to be pro-
cessed. This principle — “Move the code to the data” — which was designed into the
data-parallel processing architecture implemented by Seisint in 2003, is extremely
effective since program size is usually small in comparison to the large datasets pro-
cessed by data-intensive systems and results in much less network traffic since data
can be read locally instead of across the network. This characteristic allows pro-
cessing algorithms to execute on the nodes where the data resides reducing system
overhead and increasing performance (Gorton et al., 2008).

A second important characteristic of data-intensive computing systems is the
programming model utilized. Data-intensive computing systems utilize a machine-
independent approach in which applications are expressed in terms of high-level
operations on data, and the runtime system transparently controls the scheduling,
execution, load balancing, communications, and movement of programs and data
across the distributed computing cluster (Bryant, 2008). The programming abstrac-
tion and language tools allow the processing to be expressed in terms of data flows
and transformations incorporating new dataflow programming languages and shared
libraries of common data manipulation algorithms such as sorting. Conventional
supercomputing and distributed computing systems typically utilize machine depen-
dent programming models which can require low-level programmer control of
processing and node communications using conventional imperative programming
languages and specialized software packages which adds complexity to the parallel
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programming task and reduces programmer productivity. A machine dependent pro-
gramming model also requires significant tuning and is more susceptible to single
points of failure.

A third important characteristic of data-intensive computing systems is the focus
on reliability and availability. Large-scale systems with hundreds or thousands of
processing nodes are inherently more susceptible to hardware failures, communica-
tions errors, and software bugs. Data-intensive computing systems are designed to
be fault resilient. This includes redundant copies of all data files on disk, storage
of intermediate processing results on disk, automatic detection of node or process-
ing failures, and selective re-computation of results. A processing cluster configured
for data-intensive computing is typically able to continue operation with a reduced
number of nodes following a node failure with automatic and transparent recovery
of incomplete processing.

A final important characteristic of data-intensive computing systems is the inher-
ent scalability of the underlying hardware and software architecture. Data-intensive
computing systems can typically be scaled in a linear fashion to accommodate vir-
tually any amount of data, or to meet time-critical performance requirements by
simply adding additional processing nodes to a system configuration in order to
achieve billions of records per second processing rates (BORPS). The number of
nodes and processing tasks assigned for a specific application can be variable or
fixed depending on the hardware, software, communications, and distributed file
system architecture. This scalability allows computing problems once considered
to be intractable due to the amount of data required or amount of processing time
required to now be feasible and affords opportunities for new breakthroughs in data
analysis and information processing.

5.2.3 Grid Computing

A similar computing paradigm known as grid computing has gained popularity
primarily in research environments (Abbas, 2004). A computing grid is typically
heterogeneous in nature (nodes can have different processor, memory, and disk
resources), and consists of multiple disparate computers distributed across organiza-
tions and often geographically using wide-area networking communications usually
with relatively low-bandwidth. Grids are typically used to solve complex computa-
tional problems which are compute-intensive requiring only small amounts of data
for each processing node. A variation known as data grids allow shared repositories
of data to be accessed by a grid and utilized in application processing, however the
low-bandwidth of data grids limit their effectiveness for large-scale data-intensive
applications.

In contrast, data-intensive computing systems are typically homogeneous in
nature (nodes in the computing cluster have identical processor, memory, and
disk resources), use high-bandwidth communications between nodes such as giga-
bit Ethernet switches, and are located in close proximity in a data center using
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high-density hardware such as rack-mounted blade servers. The logical file system
typically includes all the disks available on the nodes in the cluster and data files
are distributed across the nodes as opposed to a separate shared data repository such
as a storage area network which would require data to be moved to nodes for pro-
cessing. Geographically dispersed grid systems are more difficult to manage, less
reliable, and less secure than data-intensive computing systems which are usually
located in secure data center environments.

5.2.4 Applicability to Cloud Computing

Cloud computing can take many shapes. Most visualize the cloud as the Internet
or Web which is often depicted in this manner, but a more general definition is
that cloud computing shifts the location of the computing resources and infras-
tructure providing computing applications to the network (Vaquero et al., 2009).
Software accessible through the cloud becomes a service, application platforms
accessible through the cloud to develop and deliver new applications become a
service, and hardware and software to create infrastructure and virtual data cen-
ter environments accessible through the cloud becomes a service (Weiss, 2007).
Other characteristics usually associated with cloud computing include a reduction in
the costs associated with management of hardware and software resources (Hayes,
2008), pay-per-use or pay-as-you-go access to software applications and on-demand
computing resources (Vaquero et al., 2009), dynamic provisioning of infrastructure
and scalability of resources to match the size of the data and computing require-
ments which is directly applicable to the characteristics of data-intensive computing
(Grossman & Gu, 2009). Buyya et al. (2009) provide the following comprehensive
definition of a cloud: “A Cloud is a type of parallel and distributed system consisting
of a collection of inter-connected and virtualized computers that are dynamically
provisioned and presented as one or more unified computing resource(s) based
on service-level agreements established through negotiation between the service
provider and consumer.”

The cloud computing models directly applicable to data-intensive computing
characteristics are Infrastructure as a Service (IaaS) and Platform as a Service
(PaaS). IaaS typically includes a large pool of configurable virtualized resources
which can include hardware, operating systems, middleware, and development plat-
forms or other software services which can be scaled to accommodate varying
processing loads (Vaquero et al., 2009). The computing clusters typically used for
data-intensive processing can be provided in this model. Processing environments
such as Hadoop MapReduce and LexisNexis HPCC which include application
development platform capabilities in addition to basic infrastructure implement
the Platform as a Service (PaaS) model. Applications with a high degree of data-
parallelism and a requirement to process very large datasets can take advantage of
cloud computing and IaaS or PaaS using hundreds of computers provisioned for a
short time instead of one or a small number of computers for a long time (Armbrust
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et al., 2009). According to Armbrust et al. in a University of California Berkeley
research report (Armbrust et al., 2009), this processing model is particularly well-
suited to data analysis and other applications that can benefit from parallel batch
processing. However, the user cost/benefit analysis should also include the cost of
moving large datasets into the cloud in addition the speedup and lower processing
cost offered by the IaaS and PaaS models.

5.3 Data-Intensive System Architectures

A variety of system architectures have been implemented for data-intensive and
large-scale data analysis applications including parallel and distributed relational
database management systems which have been available to run on shared nothing
clusters of processing nodes for more than two decades (Pavlo et al., 2009). These
include database systems from Teradata, Netezza, Vertica, and Exadata/Oracle and
others which provide high-performance parallel database platforms. Although these
systems have the ability to run parallel applications and queries expressed in the
SQL language, they are typically not general-purpose processing platforms and
usually run as a back-end to a separate front-end application processing system.
Although this approach offers benefits when the data utilized is primarily structured
in nature and fits easily into the constraints of a relational database, and often excels
for transaction processing applications, most data growth is with data in unstruc-
tured form (Gantz et al., 2007) and new processing paradigms with more flexible
data models were needed. Internet companies such as Google, Yahoo, Microsoft,
Facebook, and others required a new processing approach to effectively deal with
the enormous amount of Web data for applications such as search engines and social
networking. In addition, many government and business organizations were over-
whelmed with data that could not be effectively processed, linked, and analyzed
with traditional computing approaches.

Several solutions have emerged including the MapReduce architecture pioneered
by Google and now available in an open-source implementation called Hadoop
used by Yahoo, Facebook, and others. LexisNexis, an acknowledged industry leader
in information services, also developed and implemented a scalable platform for
data-intensive computing which is used by LexisNexis and other commercial and
government organizations to process large volumes of structured and unstructured
data. These approaches will be explained and contrasted in terms of their overall
structure, programming model, file systems, and applicability to cloud computing
in the following sections. Similar approaches using commodity computing clusters
including Sector/Sphere (Grossman & Gu, 2008; Grossman, Gu, Sabala, & Zhang,
2009; Gu & Grossman, 2009), SCOPE/Cosmos (Chaiken et al., 2008), DryadLINQ
(Yu, Gunda, & Isard, 2009), Meandre (Llor et al., 2008), and GridBatch (Liu &
Orban, 2008) recently described in the literature are also suitable for data-intensive
cloud computing applications and represent additional alternatives.
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5.3.1 Google MapReduce

The MapReduce architecture and programming model pioneered by Google is an
example of a modern systems architecture designed for processing and analyzing
large datasets and is being used successfully by Google in many applications to pro-
cess massive amounts of raw Web data (Dean & Ghemawat, 2004). The MapReduce
architecture allows programmers to use a functional programming style to create a
map function that processes a key-value pair associated with the input data to gen-
erate a set of intermediate key-value pairs, and a reduce function that merges all
intermediate values associated with the same intermediate key (Dean & Ghemawat,
2004). According to Dean and Ghemawat (2004), the MapReduce programs can be
used to compute derived data from documents such as inverted indexes and the pro-
cessing is automatically parallelized by the system which executes on large clusters
of commodity type machines, highly scalable to thousands of machines. Since the
system automatically takes care of details like partitioning the input data, scheduling
and executing tasks across a processing cluster, and managing the communications
between nodes, programmers with no experience in parallel programming can easily
use a large distributed processing environment.

The programming model for MapReduce architecture is a simple abstraction
where the computation takes a set of input key-value pairs associated with the input
data and produces a set of output key-value pairs. The overall model for this process
is shown in Fig. 5.2. In the Map phase, the input data is partitioned into input splits
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Fig. 5.2 MapReduce processing architecture (O’Malley, 2008)
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and assigned to Map tasks associated with processing nodes in the cluster. The Map
task typically executes on the same node containing its assigned partition of data
in the cluster. These Map tasks perform user-specified computations on each input
key-value pair from the partition of input data assigned to the task, and generates
a set of intermediate results for each key. The shuffle and sort phase then takes the
intermediate data generated by each Map task, sorts this data with intermediate data
from other nodes, divides this data into regions to be processed by the reduce tasks,
and distributes this data as needed to nodes where the Reduce tasks will execute. All
Map tasks must complete prior to the shuffle and sort and reduce phases. The num-
ber of Reduce tasks does not need to be the same as the number of Map tasks. The
Reduce tasks perform additional user-specified operations on the intermediate data
possibly merging values associated with a key to a smaller set of values to produce
the output data. For more complex data processing procedures, multiple MapReduce
calls may be linked together in sequence.

Figure 5.3 shows the MapReduce architecture and key-value processing in more
detail. The input data can consist of multiple input files. Each Map task will pro-
duce an intermediate output file for each key region assigned based on the number
of Reduce tasks R assigned to the process (hash(key) modulus R). The reduce func-
tion then “pulls” the intermediate files, sorting and merging the files for a specific
region from all the Map tasks. To minimize the amount of data transferred across the
network, an optional Combiner function can be specified which is executed on the
same node that performs a Map task. The combiner code is usually the same as

Input file 1 Input file 2 Input file 3
(Key, Value)* (Key, Value)* (Key, Value)*

(Key, Value)* [ (Key, Value)] (Key, Value)* | (Key, Value)® [(Key, Value)*[(Key, Value)* [ (Key, Value)*[(Key, Value)*| (Key, Value)* [(Key, Value)*
m1 forr1 m1forr2 m2 forr1 m2forr2 m3forr1 ma3 for r2 m4 for r1 m4 forr2 m5 forr1 m5 forr2

(Key, Value*)* (Key, Value*)*

Output File 1 Output File 2
(Key, Value)* (Key, Value)*

Fig. 5.3 MapReduce key-value processing (Nicosia, 2009)
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the reducer function code which does partial merging and reducing of data for
the local partition, then writes the intermediate files to be distributed to the
Reduce tasks. The output of the Reduce function is written as the final output
file. In the Google implementation of MapReduce, functions are coded in the C++
programming language.

Underlying and overlayed with the MapReduce architecture is the Google File
System (GFS). GFS was designed to be a high-performance, scalable distributed
file system for very large data files and data-intensive applications providing fault
tolerance and running on clusters of commodity hardware (Ghemawat, Gobioff, &
Leung, 2003). GFS is oriented to very large files dividing and storing them in fixed-
size chunks of 64 Mb by default which are managed by nodes in the cluster called
chunkservers. Each GFS consists of a single master node acting as a nameserver
and multiple nodes in the cluster acting as chunkservers using a commodity Linux-
based machine (node in a cluster) running a user-level server process. Chunks are
stored in plain Linux files which are extended only as needed and replicated on
multiple nodes to provide high-availability and improve performance. Secondary
nameservers provide backup for the master node. The large chunk size reduces
the need for MapReduce clients programs to interact with the master node, allows
filesystem metadata to be kept in memory in the master node improving perfor-
mance, and allows many operations to be performed with a single read on a chunk
of data by the MapReduce client. Ideally, input splits for MapReduce operations are
the size of a GFS chunk. GFS has proven to be highly effective for data-intensive
computing on very large files, but is less effective for small files which can cause
hot spots if many MapReduce tasks are accessing the same file.

Google has implemented additional tools using the MapReduce and GFS archi-
tecture to improve programmer productivity and to enhance data analysis and
processing of structured and unstructured data. Since the GFS filesystem is primarily
oriented to sequential processing of large files, Google has also implemented a scal-
able, high-availability distributed storage system for structured data with dynamic
control over data format with keyed random access capabilities (Chang et al., 2006).
Data is stored in Bigtable as a sparse, distributed, persistent multi-dimensional
sorted map structured which is indexed by a row key, column key, and a timestamp.
Rows in a Bigtable are maintained in order by row key, and row ranges become
the unit of distribution and load balancing called a tablet. Each cell of data in a
Bigtable can contain multiple instances indexed by the timestamp. Bigtable uses
GEFS to store both data and log files. The API for Bigtable is flexible providing
data management functions like creating and deleting tables, and data manipulation
functions by row key including operations to read, write, and modify data. Index
information for Bigtables utilize tablet information stored in structures similar to a
B+Tree. MapReduce applications can be used with Bigtable to process and trans-
form data, and Google has implemented many large-scale applications which utilize
Bigtable for storage including Google Earth.

Google has also implemented a high-level language for performing parallel data
analysis and data mining using the MapReduce and GFS architecture called Sawzall
and a workflow management and scheduling infrastructure for Sawzall jobs called



5 Data-Intensive Technologies for Cloud Computing 95

Workqueue (Pike, Dorward, Griesemer, & Quinlan, 2004). According to Pike et al.
(2004), although C++ in standard MapReduce jobs is capable of handling data
analysis tasks, it is more difficult to use and requires considerable effort by program-
mers. For most applications implemented using Sawzall, the code is much simpler
and smaller than the equivalent C++ by a factor of 10 or more. A Sawzall program
defines operations on a single record of the data, the language does not allow exam-
ining multiple input records simultaneously and one input record cannot influence
the processing of another. An emit statement allows processed data to be output
to an external aggregator which provides the capability for entire files of records
and data to be processed using a Sawzall program. The system operates in a batch
mode in which a user submits a job which executes a Sawzall program on a fixed
set of files and data and collects the output at the end of a run. Sawzall jobs can be
chained to support more complex procedures. Sawzall programs are compiled into
an intermediate code which is interpreted during runtime execution. Several reasons
are cited by Pike et al. (2004) why a new language is beneficial for data analysis
and data mining applications: (1) a programming language customized for a spe-
cific problem domain makes resulting programs “clearer, more compact, and more
expressive”; (2) aggregations are specified in the Sawzall language so that the pro-
grammer does not have to provide one in the Reduce task of a standard MapReduce
program; (3) a programming language oriented to data analysis provides a more
natural way to think about data processing problems for large distributed datasets;
and (4) Sawzall programs are significantly smaller that equivalent C++ MapReduce
programs and significantly easier to program.

Google does not currently make available its MapReduce architecture in a pub-
lic cloud computing IaaS or PaaS environment. Google however does provide the
Google Apps Engine as a public cloud computing PaaS environment (Lenk et al.,
2009; Vaquero et al., 2009).

5.3.2 Hadoop

Hadoop is an open source software project sponsored by The Apache Software
Foundation (http://www.apache.org). Following the publication in 2004 of the
research paper describing Google MapReduce (Dean & Ghemawat, 2004), an
effort was begun in conjunction with the existing Nutch project to create an
open source implementation of the MapReduce architecture (White, 2009). It later
became an independent subproject of Lucene, was embraced by Yahoo! after the
lead developer for Hadoop became an employee, and became an official Apache
top-level project in February of 2006. Hadoop now encompasses multiple subpro-
jects in addition to the base core, MapReduce, and HDFS distributed filesystem.
These additional subprojects provide enhanced application processing capabili-
ties to the base Hadoop implementation and currently include Avro, Pig, HBase,
ZooKeeper, Hive, and Chukwa. More information can be found at the Apache
Web site.
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The Hadoop MapReduce architecture is functionally similar to the Google imple-
mentation except that the base programming language for Hadoop is Java instead of
C++. The implementation is intended to execute on clusters of commodity pro-
cessors (Fig. 5.4) utilizing Linux as the operating system environment, but can
also be run on a single system as a learning environment. Hadoop clusters also
utilize the “shared nothing” distributed processing paradigm linking individual
systems with local processor, memory, and disk resources using high-speed com-
munications switching capabilities typically in rack-mounted configurations. The
flexibility of Hadoop configurations allows small clusters to be created for testing
and development using desktop systems or any system running Unix/Linux provid-
ing a JVM environment, however production clusters typically use homogeneous
rack-mounted processors in a data center environment.
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The Hadoop MapReduce architecture is similar to the Google implementation
creating fixed-size input splits from the input data and assigning the splits to Map
tasks. The local output from the Map tasks is copied to Reduce nodes where it is
sorted and merged for processing by Reduce tasks which produce the final output as
shown in Fig. 5.5.

Hadoop implements a distributed data processing scheduling and execution envi-
ronment and framework for MapReduce jobs. A MapReduce job is a unit of work
that consists of the input data, the associated Map and Reduce programs, and user-
specified configuration information (White, 2009). The Hadoop framework utilizes
a master/slave architecture with a single master server called a jobtracker and slave
servers called tasktrackers, one per node in the cluster. The jobtracker is the commu-
nications interface between users and the framework and coordinates the execution
of MapReduce jobs. Users submit jobs to the jobtracker, which puts them in a job
queue and executes them on a first-come/first-served basis. The jobtracker manages
the assignment of Map and Reduce tasks to the tasktracker nodes which then exe-
cute these tasks. The tasktrackers also handle data movement between the Map and
Reduce phases of job execution. The Hadoop framework assigns the Map tasks to
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Part 1

Fig. 5.5 Hadoop MapReduce (White, 2008)

every node where the input data splits are located through a process called data
locality optimization. The number of Reduce tasks is determined independently and
can be user-specified and can be zero if all of the work can be accomplished by
the Map tasks. As with the Google MapReduce implementation, all Map tasks must
complete before the shuffle and sort phase can occur and Reduce tasks initiated. The
Hadoop framework also supports Combiner functions which can reduce the amount
of data movement in a job.

The Hadoop framework also provides an API called Streaming to allow Map
and Reduce functions to be written in languages other than Java such as Ruby and
Python and provides an interface called Pipes for C++.

Hadoop includes a distributed file system called HDFS which is analogous to
GFS in the Google MapReduce implementation. A block in HDFS is equivalent
to a chunk in GFS and is also very large, 64 Mb by default but 128 Mb is used
in some installations. The large block size is intended to reduce the number of
seeks and improve data transfer times. Each block is an independent unit stored
as a dynamically allocated file in the Linux local filesystem in a datanode directory.
If the node has multiple disk drives, multiple datanode directories can be specified.
An additional local file per block stores metadata for the block. HDFS also follows
a master/slave architecture which consists of a single master server that manages
the distributed filesystem namespace and regulates access to files by clients called
the Namenode. In addition, there are multiple Datanodes, one per node in the clus-
ter, which manage the disk storage attached to the nodes and assigned to Hadoop.
The Namenode determines the mapping of blocks to Datanodes. The Datanodes
are responsible for serving read and write requests from filesystem clients such as
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MapReduce tasks, and they also perform block creation, deletion, and replication
based on commands from the Namenode. An HDFS system can include additional
secondary Namenodes which replicate the filesystem metadata, however there are
no hot failover services. Each datanode block also has replicas on other nodes based
on system configuration parameters (by default there are 3 replicas for each datan-
ode block). In the Hadoop MapReduce execution environment it is common for a
node in a physical cluster to function as both a Tasktracker and a datanode (Venner,
2009). The HDEFS system architecture is shown in Fig. 5.6.

Metadata (Name, replicas, ...);
/home/foo/data, 3, ...

PP Namenode
2 =V
Bt
Dortd
4””’
Read
Datanodes \7 Datanodes

] % % [}l Replcation [] q:g

Rack 1 / Rack 2
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Blocks
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Fig. 5.6 HDEFS architecture (Borthakur, 2008)

The Hadoop execution environment supports additional distributed data pro-
cessing capabilities which are designed to run using the Hadoop MapReduce
architecture. Several of these have become official Hadoop subprojects within the
Apache Software Foundation. These include HBase, a distributed column-oriented
database which provides similar random access read/write capabilities as and is
modeled after Bigtable implemented by Google. HBase is not relational, and does
not support SQL, but provides a Java API and a command-line shell for table man-
agement. Hive is a data warehouse system built on top of Hadoop that provides
SQL-like query capabilities for data summarization, ad-hoc queries, and analysis
of large datasets. Other Apache sanctioned projects for Hadoop include Avro —
A data serialization system that provides dynamic integration with scripting lan-
guages, Chukwa — a data collection system for managing large distributed systems,
ZooKeeper — a high-performance coordination service for distributed applications,
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and Pig — a high-level data-flow language and execution framework for parallel
computation.

Pig is high-level dataflow-oriented language and execution environment origi-
nally developed at Yahoo! ostensibly for the same reasons that Google developed
the Sawzall language for its MapReduce implementation — to provide a specific
language notation for data analysis applications and to improve programmer pro-
ductivity and reduce development cycles when using the Hadoop MapReduce
environment. Working out how to fit many data analysis and processing applica-
tions into the MapReduce paradigm can be a challenge, and often requires multiple
MapReduce jobs (White, 2009). Pig programs are automatically translated into
sequences of MapReduce programs if needed in the execution environment. In addi-
tion Pig supports a much richer data model which supports multi-valued, nested data
structures with tuples, bags, and maps. Pig supports a high-level of user customiza-
tion including user-defined special purpose functions and provides capabilities in the
language for loading, storing, filtering, grouping, de-duplication, ordering, sorting,
aggregation, and joining operations on the data (Olston, Reed, Srivastava, Kumar,
& Tomkins, 2008a). Pig is an imperative dataflow-oriented language (language
statements define a dataflow for processing). An example program is shown in
Fig. 5.7. Pig runs as a client-side application which translates Pig programs into
MapReduce jobs and then runs them on an Hadoop cluster. Figure 5.8 shows how
the program listed in Fig. 5.7 is translated into a sequence of MapReduce jobs. Pig
compilation and execution stages include a parser, logical optimizer, MapReduce
compiler, MapReduce optimizer, and the Hadoop Job Manager (Gates et al.,
2009).

According to Yahoo! where more than 40% of Hadoop production jobs and 60%
of ad-hoc queries are now implemented using Pig, Pig programs are 1/20th the size
of the equivalent MapReduce program and take 1/16th the time to develop (Olston,
2009). Yahoo! uses 12 standard benchmarks (called the PigMix) to test Pig perfor-
mance versus equivalent MapReduce performance from release to release. With the

visits = load ‘/data/visits’ as (user, url, time);

gVisits = group visits by url;

visitCounts = foreach gVisits generate url, count{urlVisits);
urlinfo =load ‘/data/urlinfo’ as (url, category, pRank);
visitCounts = join visitCounts by url, urlinfo by url;
gCategories = group visitCounts by category;

topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

Fig. 5.7 Sample pig latin program (Olston et al., 2008a)
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Fig. 5.8 Pig program translation to MapReduce (Olston et al., 2008a)

current release, Pig programs take approximately 1.5 times longer than the equiva-
lent MapReduce (http://wiki.apache.org/pig/PigMix). Additional optimizations are
being implemented that should reduce this performance gap further.

Hadoop is available in both public and private cloud computing environ-
ments. Amazon’s EC2 cloud computing platform now includes Amazon Elastic
MapReduce (http://aws.amazon.com/elasticmapreduce/) which allows users to pro-
vision as much capacity as needed for data-intensive computing applications. Data
for MapReduce applications can be loaded to the HDFS directly from Amazon’s S3
(Simple Storage Service).

5.3.3 LexisNexis HPCC

LexisNexis, an industry leader in data content, data aggregation, and information
services independently developed and implemented a solution for data-intensive
computing called the HPCC (High-Performance Computing Cluster) which is also
referred to as the Data Analytics Supercomputer (DAS). The LexisNexis vision for
this computing platform is depicted in Fig. 5.9. The development of this computing
platform by the Seisint subsidiary of LexisNexis began in 1999 and applications
were in production by late 2000. The LexisNexis approach also utilizes commod-
ity clusters of hardware running the Linux operating system as shown in Figs. 5.1
and 5.4. Custom system software and middleware components were developed and
layered on the base Linux operating system to provide the execution environment
and distributed filesystem support required for data-intensive computing. Because
LexisNexis recognized the need for a new computing paradigm to address its
growing volumes of data, the design approach included the definition of a new high-
level language for parallel data processing called ECL (Enterprise Data Control
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Language). The power, flexibility, advanced capabilities, speed of development, and
ease of use of the ECL programming language is the primary distinguishing factor
between the LexisNexis HPCC and other data-intensive computing solutions. The
following provides an overview of the HPCC systems architecture and the ECL
language and a general comparison to the Hadoop MapReduce architecture and
platform.
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Fig. 5.9 LexisNexis vision for a data analytics supercomputer

LexisNexis developers recognized that to meet all the requirements of data-
intensive computing applications in an optimum manner required the design and
implementation of two distinct processing environments, each of which could be
optimized independently for its parallel data processing purpose. The first of these
platforms is called a Data Refinery whose overall purpose is the general process-
ing of massive volumes of raw data of any type for any purpose but typically used
for data cleansing and hygiene, ETL processing of the raw data (extract, transform,
load), record linking and entity resolution, large-scale ad-hoc analysis of data, and
creation of keyed data and indexes to support high-performance structured queries
and data warehouse applications. The Data Refinery is also referred to as Thor, a
reference to the mythical Norse god of thunder with the large hammer symbolic
of crushing large amounts of raw data into useful information. A Thor system is
similar in its hardware configuration, function, execution environment, filesystem,
and capabilities to the Hadoop MapReduce platform, but offers significantly higher
performance in equivalent configurations.

The second of the parallel data processing platforms designed and implemented
by LexisNexis is called the Data Delivery Engine. This platform is designed as an
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online high-performance structured query and analysis platform or data warehouse
delivering the parallel data access processing requirements of online applications
through Web services interfaces supporting thousands of simultaneous queries and
users with sub-second response times. High-profile online applications developed
by LexisNexis such as Accurint utilize this platform. The Data Delivery Engine
is also referred to as Roxie, which is an acronym for Rapid Online XML Inquiry
Engine. Roxie uses a special distributed indexed filesystem to provide parallel pro-
cessing of queries. A Roxie system is similar in its function and capabilities to
Hadoop with HBase and Hive capabilities added, but provides significantly higher
throughput since it uses a more optimized execution environment and filesystem for
high-performance online processing. Most importantly, both Thor and Roxie sys-
tems utilize the same ECL programming language for implementing applications,
increasing continuity and programmer productivity.

The Thor system cluster is implemented using a master/slave approach with a
single master node and multiple slave nodes for data parallel processing. Each of
the slave nodes is also a data node within the distributed file system for the cluster.
This is similar to the Jobtracker, Tasktracker, and Datanode concepts in an Hadoop
configuration. Multiple Thor clusters can exist in an HPCC environment, and job
queues can span multiple clusters in an environment if needed. Jobs executing on a
Thor cluster in a multi-cluster environment can also read files from the distributed
file system on foreign clusters if needed. The middleware layer provides additional
server processes to support the execution environment including ECL Agents and
ECL Servers. A client process submits an ECL job to the ECL Agent which coor-
dinates the overall job execution on behalf of the client process. An ECL Job is
compiled by the ECL server which interacts with an additional server called the
ECL Repository which is a source code repository and contains shared ECL code.
ECL programs are compiled into optimized C++ source code, which is subsequently
compiled into executable code and distributed to the slave nodes of a Thor cluster
by the Thor master node. The Thor master monitors and coordinates the processing
activities of the slave nodes and communicates status information monitored by the
ECL Agent processes. When the job completes, the ECL Agent and client process
are notified, and the output of the process is available for viewing or subsequent pro-
cessing. Output can be stored in the distributed filesystem for the cluster or returned
to the client process. ECL is analogous to the Pig language which can be used in the
Hadoop environment.

The distributed filesystem used in a Thor cluster is record-oriented which is dif-
ferent from the block format used by Hadoop clusters. Records can be fixed or
variable length, and support a variety of standard (fixed record size, CSV, XML)
and custom formats including nested child datasets. Record I/O is buffered in large
blocks to reduce latency and improve data transfer rates to and from disk Files to be
loaded to a Thor cluster are typically first transferred to a landing zone from some
external location, then a process called “spraying” is used to partition the file and
load it to the nodes of a Thor cluster. The initial spraying process divides the file
on user-specified record boundaries and distributes the data as evenly as possible in
order across the available nodes in the cluster. Files can also be “desprayed” when
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needed to transfer output files to another system or can be directly copied between
Thor clusters in the same environment.

Nameservices and storage of metadata about files including record format infor-
mation in the Thor DFS are maintained in a special server called the Dali server
(named for the developer’s pet Chinchilla), which is analogous to the Namenode in
HDFS. Thor users have complete control over distribution of data in a Thor cluster,
and can re-distribute the data as needed in an ECL job by specific keys, fields, or
combinations of fields to facilitate the locality characteristics of parallel processing.
The Dali nameserver uses a dynamic datastore for filesystem metadata organized in
a hierarchical structure corresponding to the scope of files in the system. The Thor
DFS utilizes the local Linux filesystem for physical file storage, and file scopes are
created using file directory structures of the local file system. Parts of a distributed
file are named according to the node number in a cluster, such that a file in a 400-
node cluster will always have 400 parts regardless of the file size. The Hadoop fixed
block size can end up splitting logical records between nodes which means a node
may need to read some data from another node during Map task processing. With
the Thor DFS, logical record integrity is maintained, and processing I/O is com-
pletely localized to the processing node for local processing operations. In addition,
if the file size in Hadoop is less than some multiple of the block size times the num-
ber of nodes in the cluster, Hadoop processing will be less evenly distributed and
node to node disk accesses will be needed. If input splits assigned to Map tasks
in Hadoop are not allocated in whole block sizes, additional node to node I/O will
result. The ability to easily redistribute the data evenly to nodes based on process-
ing requirements and the characteristics of the data during a Thor job can provide
a significant performance improvement over the Hadoop approach. The Thor DFS
also supports the concept of “superfiles” which are processed as a single logical file
when accessed, but consist of multiple Thor DFS files. Each file which makes up a
superfile must have the same record structure. New files can be added and old files
deleted from a superfile dynamically facilitating update processes without the need
to rewrite a new file. Thor clusters are fault resilient and a minimum of one replica
of each file part in a Thor DFS file is stored on a different node within the cluster.

Roxie clusters consist of a configurable number of peer-coupled nodes function-
ing as a high-performance, high availability parallel processing query platform. ECL
source code for structured queries is pre-compiled and deployed to the cluster. The
Roxie distributed filesystem is a distributed indexed-based filesystem which uses a
custom B+Tree structure for data storage. Indexes and data supporting queries are
pre-built on Thor clusters and deployed to the Roxie DFS with portions of the index
and data stored on each node. Typically the data associated with index logical keys
is embedded in the index structure as a payload. Index keys can be multi-field and
multivariate, and payloads can contain any type of structured or unstructured data
supported by the ECL language. Queries can use as many indexes as required for
a query and contain joins and other complex transformations on the data with the
full expression and processing capabilities of the ECL language. For example, the
LexisNexis Accurint comprehensive person report which produces many pages of
output is generated by a single Roxie query.
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A Roxie cluster uses the concept of Servers and Agents. Each node in a Roxie
cluster runs Server and Agent processes which are configurable by a System
Administrator depending on the processing requirements for the cluster. A Server
process waits for a query request from a Web services interface then determines the
nodes and associated Agent processes that have the data locally that is needed for a
query, or portion of the query. Roxie query requests can be submitted from a client
application as a SOAP call, HTTP or HTTPS protocol request from a Web applica-
tion, or through a direct socket connection. Each Roxie query request is associated
with a specific deployed ECL query program. Roxie queries can also be executed
from programs running on Thor clusters. The Roxie Server process that receives the
request owns the processing of the ECL program for the query until it is completed.
The Server sends portions of the query job to the nodes in the cluster and Agent
processes which have data needed for the query stored locally as needed, and waits
for results. When a Server receives all the results needed from all nodes, it collates
them, performs any additional processing, and then returns the result set to the client
requestor.

The performance of query processing varies depending on factors such as
machine speed, data complexity, number of nodes, and the nature of the query, but
production results have shown throughput of a thousand results a second or more.
Roxie clusters have flexible data storage options with indexes and data stored locally
on the cluster, as well as being able to use indexes stored remotely in the same envi-
ronment on a Thor cluster. Nameservices for Roxie clusters are also provided by the
Dali server. Roxie clusters are fault-resilient and data redundancy is built-in using a
peer system where replicas of data are stored on two or more nodes, all data includ-
ing replicas are available to be used in the processing of queries by Agent processes.
The Roxie cluster provides automatic failover in case of node failure, and the cluster
will continue to perform even if one or more nodes are down. Additional redundancy
can be provided by including multiple Roxie clusters in an environment.

Load balancing of query requests across Roxie clusters is typically implemented
using external load balancing communications devices. Roxie clusters can be sized
as needed to meet query processing throughput and response time requirements, but
are typically smaller that Thor clusters.

The implementation of two types of parallel data processing platforms (Thor
and Roxie) in the HPCC processing environment serving different data processing
needs allows these platforms to be optimized and tuned for their specific purposes to
provide the highest level of system performance possible to users. This is a distinct
advantage when compared to the Hadoop MapReduce platform and architecture
which must be overlayed with different systems such as HBase, Hive, and Pig which
have different processing goals and requirements, and don’t always map readily into
the MapReduce paradigm. In addition, the LexisNexis HPCC approach incorporates
the notion of a processing environment which can integrate Thor and Roxie clusters
as needed to meet the complete processing needs of an organization. As a result,
scalability can be defined not only in terms of the number of nodes in a cluster,
but in terms of how many clusters and of what type are needed to meet system
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performance goals and user requirements. This provides a distinct advantage when
compared to Hadoop clusters which tend to be independent islands of processing.

LexisNexis HPCC is commercially available to implement private cloud com-
puting environments (http://risk.lexisnexis.com/Article.aspx?id=51). In addition,
LexisNexis provides hosted persistent HPCC environments to external customers.
Public cloud computing PaaS utilizing the HPCC platform is planned as a future
offering.

5.3.4 ECL

The ECL programming language is a key factor in the flexibility and capabilities
of the HPCC processing environment. ECL was designed to be a transparent and
implicitly parallel programming language for data-intensive applications. It is a
high-level, declarative, non-procedural dataflow-oriented language that allows the
programmer to define what the data processing result should be and the dataflows
and transformations that are necessary to achieve the result. Execution is not deter-
mined by the order of the language statements, but from the sequence of dataflows
and transformations represented by the language statements. It combines data repre-
sentation with algorithm implementation, and is the fusion of both a query language
and a parallel data processing language. ECL uses an intuitive syntax which has
taken cues from other familiar languages, supports modular code organization
with a high degree of reusability and extensibility, and supports high-productivity
for programmers in terms of the amount of code required for typical applica-
tions compared to traditional languages like Java and C++. Similar to the benefits
Sawzall provides in the Google environment, and Pig provides to Hadoop users, a
20 times increase in programmer productivity is typical significantly reducing devel-
opment cycles. ECL is compiled into optimized C++ code for execution on the
HPCC system platforms, and can be used for complex data processing and anal-
ysis jobs on a Thor cluster or for comprehensive query and report processing on
a Roxie cluster. ECL allows inline C++ functions to be incorporated into ECL
programs, and external programs in other languages can be incorporated and paral-
lelized through a PIPE facility. External services written in C++ and other languages
which generate DLLs can also be incorporated in the ECL system library, and
ECL programs can access external Web services through a standard SOAPCALL
interface.

The basic unit of code for ECL is called an attribute. An attribute can contain a
complete executable query or program, or a shareable and reusable code fragment
such as a function, record definition, dataset definition, macro, filter definition, etc.
Attributes can reference other attributes which in turn can reference other attributes
so that ECL code can be nested and combined as needed in a reusable manner.
Attributes are stored in ECL code repository which is subdivided into modules typi-
cally associated with a project or process. Each ECL attribute added to the repository
effectively extends the ECL language like adding a new word to a dictionary, and
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attributes can be reused as part of multiple ECL queries and programs. With ECL
a rich set of programming tools is provided including an interactive IDE similar to
Visual C++, Eclipse and other code development environments.

The ECL language includes extensive capabilities for data definition, filtering,
data management, and data transformation, and provides an extensive set of built-in
functions to operate on records in datasets which can include user-defined trans-
formation functions. Transform functions operate on a single record or a pair of
records at a time depending on the operation. Built-in transform operations in the
ECL language which process through entire datasets include PROJECT, ITERATE,
ROLLUP, JOIN, COMBINE, FETCH, NORMALIZE, DENORMALIZE, and
PROCESS. The transform function defined for a JOIN operation for example
receives two records, one from each dataset being joined, and can perform any
operations on the fields in the pair of records, and returns an output record which
can be completely different from either of the input records. Example syntax
for the JOIN operation from the ECL Language Reference Manual is shown in
Fig. 5.10. Other important data operations included in ECL which operate across
datasets and indexes include TABLE, SORT, MERGE, MERGEJOIN, DEDUP,
GROUP, APPLY, ASSERT, AVE, BUILD, BUILDINDEX, CHOOSESETS,
CORRELATION, COUNT, COVARIANCE, DISTRIBUTE, DISTRIBUTION,
ENTH, EXISTS, GRAPH, HAVING, KEYDIFF, KEYPATCH, LIMIT, LOOP,
MAX, MIN, NONEMPTY, OUTPUT, PARSE, PIPE, PRELOAD, PULL, RANGE,
REGROUP, SAMPLE, SET, SOAPCALL, STEPPED, SUM, TOPN, UNGROUP,
and VARIANCE.

The Thor system allows data transformation operations to be performed either
locally on each node independently in the cluster, or globally across all the nodes in
a cluster, which can be user-specified in the ECL language. Some operations such
as PROJECT for example are inherently local operations on the part of a distributed
file stored locally on a node. Others such as SORT can be performed either locally or
globally if needed. This is a significant difference from the MapReduce architecture
in which Map and Reduce operations are only performed locally on the input split
assigned to the task. A local SORT operation in an HPCC cluster would sort the
records by the specified key in the file part on the local node, resulting in the records
being in sorted order on the local node, but not in full file order spanning all nodes.
In contrast, a global SORT operation would result in the full distributed file being in
sorted order by the specified key spanning all nodes. This requires node to node data
movement during the SORT operation. Figure 5.11 shows a sample ECL program
using the LOCAL mode of operation which is the equivalent of the sample PIG
program for Hadoop shown in Fig. 5.7. Note the explicit programmer control over
distribution of data across nodes. The colon-equals “:="operator in an ECL program
is read as “is defined as”. The only action in this program is the OUTPUT statement,
the other statements are definitions.

An additional important capability provided in the ECL programming language
is support for natural language processing (NLP) with PATTERN statements and
the built-in PARSE function. The PARSE function cam accept an unambiguous
grammar defined by PATTERN, TOKEN, and RULE statements with penalties
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JOIN(leftrecset, rightrecsst, joincondition [, transform] [, jointype] [, joinflags] )

JOIN(setofdatasets, joincondition, transform, SORTED( fields) [, jointype] )
kftrecset The left set of records to process.
rightrecset The right set of records to process. This may be an INDEX.

Joincondition Anapwsumspocn&tnghwmmﬂdarwdsm&ebﬁmﬂmdw
f fs (see g Logic discussions below). In the expression,
thclncyvmdI.E.Fristhcdamctq:ahﬁctfotﬂeidsmdaclghmrmdthe

keyword RIGHT is the dataset qualifier for fields in the rightrecser.

transform Optional. The TRANSFORM function to call for each pair of records to
process. If omitted, JOIN returns all fields from both the kfirecses and
rightrecset, with the second of any duplicate named fields removed.

Jointype Optional. An inner join if omitted, else one of the listed types in the JOIN
Types section below

Joinflags Optional. Any option (see the JOIN Options section below) to specify
exacty how the JOIN operation executes.

setofdatasets  The SET of recordsets to process ([idx1,idx2,idx3]), typically INDE Xes,

which all must have the same format.

SORTED  Specifies the sort order of records in the input setoflatasets and also the output
sort order of the result set.

Sfrelds A comma-delimited list of fields in the sefoffatasess, which must be a subset of

the input sort order. These fieds must all be used in the jaincondition as they
define the order in which the fields are STEPPED.

Return: JOIN returns a record set.

The JOIN function produces a result set based on the intersection of two or more datasets or
indexes (as determined by the joincondstion).

Fig. 5.10 ECL Sample syntax for JOIN operation

Queve: | dev_edberver s v Custer: | thord00_88 de v | [ tore |

/{ Sample ECL Code
layout_visits := RECORD string user; string url: scring time; END;
wioita 1= DATASET('-thor_dacaldl::data: :visits', layout_vioito, FLAT)

layout_urlInfo := RECORD string url: string category; string pRank; END:
urllnfo := DATASET(' -thor_datad00::date::urlinfc’, layout_urllnfo, FLAT):

// Distribute Visits by URL, Count vists by URL
layout_visitCounts := RECORD visits.url; visits_cnt := COUNT(GROUP); END;
visitCounts := TABLE(DISTRIBUTE (visita, HASH(url)), layout_visicCounts,url, LOCAL):

// Distribute Category by URL, Join category to URLs
visitCountsCat := JOIN(visitCounts, DISTRIBUTE (urlInfo,HASH{url)),LEFT.URL=RIGHT.URL,LOCAL) :

/{ Distribuce and Group by Category, Output top 10 URLs for each category

coplicls := TOPN [GROUP:DISTRIBUTE lvlsitCuunt,aCat HASH ([category) ) ,category, ALL, LOCAL) , 10, -visits_cnt]:

OUTRUT (toplcls,, ' ~thor datad00::data::topurls’ , OVERWRITE) 3|

Fig. 5.11 ECL code example
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or preferences to provide deterministic path selection, a capability which can sig-
nificantly reduce the difficulty of NLP applications. PATTERN statements allow
matching patterns including regular expressions to be defined and used to parse
information from unstructured data such as raw text. PATTERN statements can be
combined to implement complex parsing operations or complete grammars from
BNF definitions. The PARSE operation function across a dataset of records on a
specific field within a record, this field could be an entire line in a text file for exam-
ple. Using this capability of the ECL language it is possible to implement parallel
processing for information extraction applications across document files including
XML-based documents or Web pages. The key benefits of ECL can be summarized
as follows:

e ECL incorporates transparent and implicit data parallelism regardless of the size
of the computing cluster and reduces the complexity of parallel programming
increasing the productivity of application developers.

e ECL enables implementation of data-intensive applications with huge volumes
of data previously thought to be intractable or infeasible. ECL was specifically
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designed for manipulation of data and query processing. Order of magnitude
performance increases over other approaches are possible.

e ECL provides a comprehensive IDE and programming tools that provide a
highly-interactive environment for rapid development and implementation of
ECL applications.

e ECL is a powerful, high-level, parallel programming language ideal for imple-
mentation of ETL, Information Retrieval, Information Extraction, and other
data-intensive applications.

e ECL is a mature and proven language but still evolving as new advancements in
parallel processing and data-intensive computing occur.

5.4 Hadoop vs. HPCC Comparison

Hadoop and HPCC can be compared directly since it is possible for both systems to
be executed on identical cluster hardware configurations. This permits head-to-head
system performance benchmarking using a standard workload or set of application
programs designed to test the parallel data processing capabilities of each system. A
standard benchmark available for data-intensive computing platforms is the Terasort
benchmark managed by an industry group led by Microsoft and HP. The Terabyte
sort has evolved to be the GraySort which measures the number of terabytes per
minute that can be sorted on a platform which allows clusters with any number
of nodes to be utilized. However, in comparing the effectiveness and equivalent
cost/performance of systems, it is useful to run benchmarks on identical system
hardware configurations. A head-to-head comparison of the original Terabyte sort
on a 400-node cluster will be presented here. An additional method of comparing
system platforms is a feature and functionality comparison, which is a subjective
evaluation based on factors determined by the evaluator. Although such a compar-
ison contains inherent bias, it is useful in determining strengths and weaknesses of
systems.

5.4.1 Terabyte Sort Benchmark

The Terabyte sort benchmark has its roots in benchmark tests sorting conducted
on computer systems since the 1980s. More recently, a Web site originally spon-
sored by Microsoft and one of its research scientists Jim Gray has conducted formal
competitions each year with the results presented at the SIGMOD (Special Interest
Group for Management of Data) conference sponsored by the ACM each year
(http://sortbenchmark.org). Several categories for sorting on systems exist including
the Terabyte sort which was to measure how fast a file of 1 Terabyte of data format-
ted in 100 byte records (10,000,000 total records) could be sorted. Two categories
were allowed called Daytona (a standard commercial computer system and software
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with no modifications) and Indy (a custom computer system with any type of modi-
fication). No restrictions existed on the size of the system so the sorting benchmark
could be conducted on as large a system as desired. The current 2009 record holder
for the Daytona category is Yahoo! using a Hadoop configuration with 1460 nodes
with 8 GB Ram per node, 8000 Map tasks, and 2700 Reduce tasks which sorted
1 TB in 62 seconds (O’Malley & Murthy, 2009). In 2008 using 910 nodes, Yahoo!
performed the benchmark in 3 minutes 29 seconds. In 2008, LexisNexis using the
HPCC architecture on only a 400-node system performed the Terabyte sort bench-
mark in 3 minutes 6 seconds. In 2009, LexisNexis again using only a 400-node
configuration performed the Terabyte sort benchmark in 102 seconds.

However, a fair and more logical comparison of the capability of data-intensive
computer system and software architectures using computing clusters would be to
conduct this benchmark on the same hardware configuration. Other factors should
also be evaluated such as the amount of code required to perform the bench-
mark which is a strong indication of programmer productivity, which in itself is
a significant performance factor in the implementation of data-intensive computing
applications.

On August 8, 2009 a Terabyte Sort benchmark test was conducted on a devel-
opment configuration located at LexisNexis Risk Solutions offices in Boca Raton,
FL in conjunction with and verified by Lawrence Livermore National Labs (LLNL).
The test cluster included 400 processing nodes each with two local 300 MB SCSI
disk drives, Dual Intel Xeon single core processors running at 3.00 GHz, 4 GB mem-
ory per node, all connected to a single Gigabit ethernet switch with 1.4 Terabytes/sec
throughput. Hadoop Release 0.19 was deployed to the cluster and the standard
Terasort benchmark written in Java included with the release was used for the bench-
mark. Hadoop required 6 minutes 45 seconds to create the test data, and the Terasort
benchmark required a total of 25 minutes 28 seconds to complete the sorting test
as shown in Fig. 5.13. The HPCC system software deployed to the same platform
and using standard ECL required 2 minutes and 35 seconds to create the test data,
and a total of 6 minutes and 27 seconds to complete the sorting test as shown in

Hadoop Job job_200908081628_0001 on History Viewer

User: hadoop
JobName: TeraGen

JobConf: hafs: node088001:342 10 5 hadocp hadoop-datastore hadoop-hadoop mapred svstem job 200008081628 0001 ob xoml

Finished Ar: $-Aug-
Stams: SUCCESS
Analvse This Job

Kind Total Tasks(; feded-kll=d) dtasks | Faled tasks | Killed tasks | Start Tome Firgsh Tane

Semp 1 ] 1] 8-Aug-2009 164910 8-Aug-2009 16:49:12 (1sec)

Map 403 400 [} 3 8-Aug-2009 164912 $-Aug-2009 16.55:56 (Guins, 43sec)
Reduce O (1] L] (1]

Cleamp | 1 i [ ] S Aug-2009 16:55-96  §-Aug-2009 16:54:48 (1se0)

Fig. 5.13 Hadoop terabyte sort benchmark results
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Emdronment Initislize 0001

Process 6:27.102

WorkUnit unlockRemate 0.005

EJ Query: (1)
[¢7 Bezza
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log. /110 173 85 212/cS/thor_logs_st 03_08_2009_12_01_01THORMASTER log
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-
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Bulder [+ W20020606-120635

Fig. 5.14 HPCC terabyte sort benchmark results

Fig. 5.14. Thus the Hadoop implementation using Java running on the same hard-
ware configuration took 3.95 times longer than the HPCC implementation using
ECL.

The Hadoop version of the benchmark used hand-tuned Java code including
custom TeraSort, TeralnputFormat and TeraOutputFormat classes with a total of
562 lines of code required for the sort. The HPCC system required only 10 lines of
ECL code for the sort, a 50-times reduction in the amount of code required.

5.4.2 Pigvs. ECL

Although many Hadoop installations implement applications directly in Java, the
Pig Latin language is now being used to increase programmer productivity and fur-
ther simplify the programming of data-intensive applications at Yahoo! and other
major users of Hadoop (Gates et al., 2009). Google also added a high-level lan-
guage for similar reasons called Sawzall to its implementation of MapReduce to
facilitate data analysis and data mining (Pike et al., 2004). The HPCC platform
includes a high-level language discussed previously which is analogous to Pig and
Sawzall called ECL. ECL is the base programming language used for applications
on the HPCC platform even though it is compiled into C++ for execution. When
comparing the Hadoop and HPCC platforms, it is useful to compare the features
and functionality of these high-level languages.

Both Pig and ECL are intrinsically parallel, supporting transparent data-
parallelism on the underlying platform. Pig and ECL are translated into programs
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that automatically process input data for a process in parallel with data dis-
tributed across a cluster of nodes. Programmers of both languages do not need
to know the underlying cluster size or use this to accomplish data-parallel exe-
cution of jobs. Both Pig and ECL are dataflow-oriented, but Pig is an impera-
tive programming language and ECL is a declarative programming language. A
declarative language allows programmers to focus on the data transformations
required to solve an application problem and hides the complexity of the under-
lying platform and implementation details, reduces side effects, and facilitates
compiler optimization of the code and execution plan. An imperative program-
ming language dictates the control flow of the program which may not result
in an ideal execution plan in a parallel environment. Declarative programming
languages allow the programmer to specify “what” a program should accom-
plish, instead of “how” to accomplish it. For more information, refer to the
discussions of declarative (http://en.wikipedia.org/wiki/Declarative_programming)
and imperative (http://en.wikipedia.org/wiki/Imperative_programming) program-
ming languages on Wikipedia.

The source code for both Pig and ECL is compiled or translated into another
language — Pig source programs are translated into Java language MapReduce jobs
for execution and ECL programs are translated into C++ source code which is then
compiled into a DLL for execution. Pig programs are restricted to the MapReduce
architecture and HDFS of Hadoop, but ECL has no fixed framework other than the
DFS (Distributed File System) used for HPCC and therefore can be more flexible in
implementation of data operations. This is evident in two key areas: (1) ECL allows
operations to be either global or local, where standard MapReduce is restricted to
local operations only in both the Map and Reduce phases. Global operations process
the records in a dataset in order across all nodes and associated file parts in sequence
maintaining the records in sorted order as opposed to only the records contained in
each local node which may be important to the data processing procedure; (2) ECL
has the flexibility to implement operations which can process more than one record
at a time such as its ITERATE operation which uses a sliding window and passes two
records at a time to an associated transform function. This allows inter-record field-
by-field dependencies and decisions which are not available in Pig. For example the
DISTINCT operation in Pig which is used to remove duplicates does not allow this
on a subset of fields. ECL provides both DEDUP and ROLLUP operations which
are usually preceded by a SORT and operate on adjacent records in a sliding window
mode and any condition relating to the field contents of the left and right record of
adjacent records can be used to determine if the record is removed. ROLLUP allows
a custom transformation to be applied to the de-duplication process.

An important consideration of any software architecture for data is the under-
lying data model. Pig incorporates a very flexible nested data model which allows
non-atomic data types (atomic data types include numbers and strings) such as set,
map, and tuple to occur as fields of a table (Olston, Reed, Srivastava, Kumar, &
Tomkins, 2008b). Tuples are sequences of fields, bags are collections of tuples, and
maps are a collection of data items where each data item has a key with which it can
be looked up. A data record within Pig is called a relation which is an outer bag,
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the bag is a collection of tuples, each tuple is an ordered set of fields, and a field is
a piece of data. Relations are referenced by a name assigned by a user. Types can
be assigned by the user to each field, but if not assigned will default to a bytearray
and conversions are applied depending on the context in which the field is used.
The ECL data model also offers a nested data structure using child datasets. A user-
specified RECORD definition defines the content of each record in a dataset which
can contain fixed or variable length fields or child datasets which in turn contain
fields or child datasets etc. With this format any type of data structure can be rep-
resented. ECL offers specific support for CSV and XML formats in addition to flat
file formats. Each field in a record has a user-specified identifier and data type and
an optional default value and optional field modifiers such as MAXLENGTH that
enhance type and use checking during compilation. ECL will perform implicit cast-
ing and conversion depending on the context in which a field is used, and explicit
user casting is also supported. ECL also allows in-line datasets allowing sample data
to be easily defined and included in the code for testing rather than separately in a
file.

The Pig environment offers several programmer tools for development, execu-
tion, and debugging of Pig Latin programs (Pig Latin is the formal name for the
language, and the execution environment is called Pig, although both are commonly
referred to as Pig). Pig provides command line execution of scripts and an interactive
shell called Grunt that allows you to execute individual Pig commands or execute
a Pig script. Pig programs can also be embedded in Java programs. Although Pig
does not provide a specific IDE for developing and executing PIG programs, add-ins
are available for several program editing environments including Eclipse, Vim, and
Textmate to perform syntax checking and highlighting (White, 2009). PigPen is an
Eclipse plug-in that provides program editing, an example data generator, and the
capability to run a Pig script on a Hadoop cluster.

The HPCC platform provides an extensive set of tools for ECL development
including a comprehensive IDE called QueryBuilder which allows program editing,
execution, and interactive graph visualization for debugging and profiling ECL pro-
grams. The common code repository tree is displayed in QueryBuilder and tools
are provided for source control, accessing and searching the repository. ECL jobs
can be launched to an HPCC environment or specific cluster, and execution can
be monitored directly from QueryBuilder. External tools are also provided includ-
ing ECLWatch which provides complete access to current and historical workunits
(jobs executed in the HPCC environment are packaged into workunits), queue man-
agement and monitoring, execution graph visualization, distributed filesystem utility
functions, and system performance monitoring and analysis.

Although Pig Latin and the Pig execution environment provide a basic high-
level language environment for data-intensive processing and analysis and increases
the productivity of developers and users of the Hadoop MapReduce environment,
ECL is a significantly more comprehensive and mature language that generates
highly optimized code, offers more advanced capabilities in a robust, proven, inte-
grated data-intensive processing architecture. Table 5.1 provides a feature to feature
comparison between the Pig and ECL languages and their execution environments.
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5.4.3 Architecture Comparison

Hadoop MapReduce and the LexisNexis HPCC platform are both scalable archi-
tectures directed towards data-intensive computing solutions. Each of these system
platforms has strengths and weaknesses and their overall effectiveness for any appli-
cation problem or domain is subjective in nature and can only be determined through
careful evaluation of application requirements versus the capabilities of the solution.
Hadoop is an open source platform which increases its flexibility and adaptability to
many problem domains since new capabilities can be readily added by users adopt-
ing this technology. However, as with other open source platforms, reliability and
support can become issues when many different users are contributing new code
and changes to the system. Hadoop has found favor with many large Web-oriented
companies including Yahoo!, Facebook, and others where data-intensive computing
capabilities are critical to the success of their business. Amazon has implemented
new cloud computing services using Hadoop as part of its EC2 called Amazon
Elastic MapReduce. A company called Cloudera was recently formed to provide
training, support and consulting services to the Hadoop user community and to pro-
vide packaged and tested releases which can be used in the Amazon environment.
Although many different application tools have been built on top of the Hadoop
platform like Pig, HBase, Hive, etc., these tools tend not to be well-integrated offer-
ing different command shells, languages, and operating characteristics that make it
more difficult to combine capabilities in an effective manner.

However, Hadoop offers many advantages to potential users of open source soft-
ware including readily available online software distributions and documentation,
easy installation, flexible configurations based on commodity hardware, an execu-
tion environment based on a proven MapReduce computing paradigm, ability to
schedule jobs using a configurable number of Map and Reduce tasks, availability of
add-on capabilities such as Pig, HBase, and Hive to extend the capabilities of the
base platform and improve programmer productivity, and a rapidly expanding user
community committed to open source. This has resulted in dramatic growth and
acceptance of the Hadoop platform and its implementation to support data-intensive
computing applications.

The LexisNexis HPCC platform is an integrated set of systems, software, and
other architectural components designed to provide data-intensive computing capa-
bilities from raw data processing and ETL applications, to high-performance query
processing and data mining. The ECL language was specifically implemented to
provide a high-level dataflow parallel processing language that is consistent across
all system components and has extensive capabilities developed and optimized over
a period of almost 10 years. The LexisNexis HPCC is a mature, reliable, well-
proven, commercially supported system platform used in government installations,
research labs, and commercial enterprises. The comparison of the Pig Latin lan-
guage and execution system available on the Hadoop MapReduce platform to the
ECL language used on the HPCC platform presented here reveals that ECL pro-
vides significantly more advanced capabilities and functionality without the need
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for extensive user-defined functions written in another language or resorting to a
native MapReduce application coded in Java.

The following comparison of overall features provided by the Hadoop and HPCC
system architectures reveals that the HPCC architecture offers a higher level of inte-
gration of system components, an execution environment not limited by a specific
computing paradigm such as MapReduce, flexible configurations and optimized
processing environments which can provide data-intensive applications from data
analysis to data warehousing and high-performance online query processing, and
high programmer productivity utilizing the ECL programming language and tools.
Table 5.2 provides a summary comparison of the key features of the hardware
and software architectures of both system platforms based on the analysis of each
architecture presented in this chapter.

5.5 Conclusions

As aresult of the continuing information explosion, many organizations are drown-
ing in data and the data gap or inability to process this information and use it
effectively is increasing at an alarming rate. Data-intensive computing represents a
new computing paradigm which can address the data gap and allow government and
commercial organizations and research environments to process massive amounts of
data and implement applications previously thought to be impractical or infeasible.
Some organizations with foresight recognized early that new parallel-processing
architectures were needed including Google who initially developed the MapReduce
architecture and LexisNexis who developed the HPCC architecture. More recently
the Hadoop platform has emerged as an open source alternative for the MapReduce
approach. Hadoop has gained momentum quickly, and additional add-on capabili-
ties to enhance the platform have been developed including a dataflow programming
language and execution environment called Pig. These architectures, their relative
strengths and weaknesses, and their applicability to cloud computing are described
in this chapter, and a direct comparison of the Pig language of Hadoop to the ECL
language used with the LexisNexis HPCC platform was presented. Availability of
a high-level parallel dataflow-oriented programming language has proven to be a
critical success factor in data-intensive computing.

The suitability of a processing platform and architecture for an organization and
its application requirements can only be determined after careful evaluation of avail-
able alternatives. Many organizations have embraced open source platforms while
others prefer a commercially developed and supported platform by an established
industry leader. The Hadoop MapReduce platform is now being used successfully at
many so-called Web companies whose data encompasses massive amounts of Web
information as its data source. The LexisNexis HPCC platform is at the heart of a
premier information services provider and industry leader, and has been adopted by
government agencies, commercial organizations, and research laboratories because
of its high-performance cost-effective implementation. Existing HPCC applications
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include raw data processing, ETL, and linking of enormous amounts of data to
support online information services such as LexisNexis and industry-leading infor-
mation search applications such as Accurint; entity extraction and entity resolution
of unstructured and semi-structured data such as Web documents to support infor-
mation extraction; statistical analysis of Web logs for security applications such
as intrusion detection; online analytical processing to support business intelligence
systems (BIS); and data analysis of massive datasets in educational and research
environments and by state and federal government agencies.

There are many tradeoffs in making the right decision in choosing a new
computer systems architecture, and often the best approach is to conduct a spe-
cific benchmark test with a customer application to determine the overall system
effectiveness and performance. The relative cost-performance characteristics of
the system in additional to suitability, flexibility, scalability, footprint, and power
consumption factors which impact the total cost of ownership (TCO) must be
considered. Cloud computing alternatives which reduce or eliminate up-front
infrastructure investment should also be considered if internal resources are limited.

A comparison of the Hadoop MapReduce architecture to the HPCC architecture
in this chapter reveals many similarities between the platforms including the use
of a high-level dataflow-oriented programming language to implement transparent
data-parallel processing. Both platforms are adaptable to cloud computing to pro-
vide platform as a service (PaaS). A key advantage to using the Hadoop architecture
is its availability in a public cloud computing service offering. However, private
cloud computing which utilizes persistent configurations with dedicated infrastruc-
ture instead of virtualized servers shared with other users common in public cloud
computing can have a significant performance advantage for data-intensive com-
puting applications. Some additional advantages of choosing the LexisNexis HPCC
platform which can be utilized in private cloud computing include: (1) an archi-
tecture which implements a highly integrated system environment with capabilities
from raw data processing to high-performance queries and data analysis using a
common language; (2) an architecture which provides equivalent performance at
a much lower system cost based on the number of processing nodes required as
demonstrated with the Terabyte Sort benchmark where the HPCC platform was
almost 4 times faster than Hadoop running on the same hardware resulting in sig-
nificantly lower total cost of ownership (TCO); (3) an architecture which has been
proven to be stable and reliable on high-performance data processing production
applications for varied organizations over a 10-year period; (4) an architecture that
uses a dataflow programming language (ECL) with extensive built-in capabilities
for data-parallel processing which allows complex operations without the need for
extensive user-defined functions and automatically optimizes execution graphs with
hundreds of processing steps into single efficient workunits; (5) an architecture with
a high-level of fault resilience and language capabilities which reduce the need for
re-processing in case of system failures; and (6) an architecture which is available
from and supported by a well-known leader in information services and risk solu-
tions (LexisNexis) who is part of one of the world’s largest publishers of information
ReedElsevier.
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Chapter 6
Survey of Storage and Fault Tolerance Strategies
Used in Cloud Computing

Kathleen Ericson and Shrideep Pallickara

6.1 Introduction

Cloud computing has gained significant traction in recent years. Companies such as
Google, Amazon and Microsoft have been building massive data centers over the
past few years. Spanning geographic and administrative domains, these data centers
tend to be built out of commodity desktops with the total number of computers
managed by these companies being in the order of millions. Additionally, the use
of virtualization allows a physical node to be presented as a set of virtual nodes
resulting in a seemingly inexhaustible set of computational resources. By leveraging
economies of scale, these data centers can provision cpu, networking, and storage at
substantially reduced prices which in turn underpins the move by many institutions
to host their services in the cloud.

In this chapter we will be surveying the most dominant storage and fault toler-
ant strategies that are currently being used in cloud computing settings. There are
several unifying themes that underlie the systems that we survey.

6.1.1 Theme 1: Voluminous Data

The datasets managed by these systems tend to be extremely voluminous. It is not
unusual for these datasets to be several terabytes. The datasets also tend to be gen-
erated by programs, services and devices as opposed to being created by a user one
character at a time. In 2000, the Berkeley “How Much Information?” report (Lyman
& Varian, 2000) reported that there was an estimated 25-50 TB of data on the web.
In 2003 ((Lyman & Varian, 2003), the same group reported that there were approx-
imately 167 TB of information on the web. The Large Hadron Collider (LHC) is
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expected to produce 15 PB/year (Synodinos, 2008). The amount of data being gen-
erated has been growing on an exponential scale — there are growing challenges not
only in how to effectively process this data, but also with basic storage.

6.1.2 Theme 2: Commodity Hardware

The storage infrastructure for these datasets tend to rely on commodity hard drives
that have rotating disks. This mechanical nature of the disk drives limits their per-
formance. While processor speeds have grown exponentially disk access times have
not kept pace. The performance disparity between processor and disk access times
is in the order of 14,000,000:1 and continues to grow (Robbins & Robbins).

6.1.3 Theme 3: Distributed Data

A given dataset is seldom stored on a given node, and is typically distributed over a
set of available nodes. This is done because a single commodity hard drive typically
cannot hold the entire dataset. Scattering the dataset on a set of available nodes
is also a precursor for subsequent concurrent processing being performed on the
dataset.

6.1.4 Theme 4: Expect Failures

Since the storage infrastructure relies on commodity components, failures should
be expected. The systems thus need to have a failure model in place that can ensure
continued progress and acceptable response times despite any failures that might
have taken place. Often these datasets are replicated, and individual slices of these
datasets have checksums associated with them to detect bit-flips and the concomitant
data corruptions that often taken place in commodity hardware.

6.1.5 Theme 5: Tune for Access by Applications

Though these storage frameworks are built on top of existing file systems, the
stored datasets are intended to be processed by applications and not humans. Since
the dataset is scattered on a large number of machines, reconstructing the dataset
requires processing the metadata (data describing the data) to identify the precise
location of specific portions of the datasets. Manually accessing any of the nodes to
look for a portion of the dataset is futile since these portions have themselves been
modified to include checksum information.
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6.1.6 Theme 6: Optimize for Dominant Usage

Another important consideration in these storage frameworks is optimizing the most
general access patterns for these datasets. In some cases, this would mean optimiz-
ing for long, sequential reads that puts a premium on conserving bandwidth while
in others it would involve optimizing small, continuous updates to the managed
datasets.

6.1.7 Theme 7: Tradeoff Between Consistency and Availability

Since these datasets are dispersed (and replicated) on a large number of machines
accounting for these failures entails a tradeoff between consistency and availability.
Most of these storage frameworks opt for availability and rely on eventual con-
sistency. This choice has its roots in the CAP theorem. In 2000, Brewer theorized
that it was impossible for a web service to provide full guarantees of Consistency,
Availability, and Partition-tolerance (Brewer, 2000). In 2002, Seth Gilbert and
Nancy Lynch at MIT proved this theorem (Gilbert & Lynch, 2002). While Brewer’s
theorem was geared towards web services, any distributed file system can be viewed
as such. In some cases, such as Amazon’s S3, it is easier to see this connection than
others. Before delving deeper, what do we mean by Consistency, Availability, and
Partition-tolerance?

Having a consistent distributed system means that no matter what node you con-
nect to, you will always find the same exact data. Here, we take availability to mean
that as long as a request is sent to a node that has not failed it will return a result.
This definition has no bound on time limit, it simply states that eventually a client
will get a response. Last, there is partition tolerance. A partition occurs when one
part of your distributed system can no longer communicate with another part, but
can still communicate with clients. The simplest example of this is in a system with
2 nodes, A and B. If A and B can no longer communicate with each other, but
both can and do keep serving clients, then the system is partition tolerant. With a
partition-tolerant system, nothing short of a full system failure keeps the system
from working correctly.

As a quick example, let’s look at a partition-tolerant system with two nodes A
and B. Let’s suppose there is some network error between A and B, and they can
no longer communicate with each other, but both can still connect to clients. If a
client were to write a change a file v hosted on both A and B while connected to B,
the change would go through on B, but if the client later connects to A and reads
v again, the client will not see their changes, so the system is no longer consistent.
You could get around this by instead sacrificing availability — if you ignore writes
during a network partition, you can maintain consistency.

In this chapter we will be reviewing storage frameworks from the three dominant
cloud computing providers — Google, Amazon and Microsoft. We profile each stor-
age framework along dimensions that include inter alia replication, failure model,
replication and security. Our description of each framework is self-contained,
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and the reader can peruse these frameworks in any order. For completeness we
have included a description of the xFS system (developed in the mid-90s), which
explored ideas that have now found its way into several of the systems that we
discuss.

6.2 xFS

Unlike the other systems mentioned here, XFS never made it to a production envi-
ronment. XFS is the original “Serverless File System”, and several systems in
production today build upon ideas originally brought up in (Anderson et al., 1996).
xFS was designed to run on commodity hardware, and expected to handle large
loads and multiple users. Based on tracking usage patterns in an NFS system for
several days, one assumption XFS makes is that users other than the creator of the
file rarely modify files.

6.2.1 Failure Model

In xFS, when a machine fails it is not expected to come back online. Upon failure of
a machine, data is automatically shuffled around to compensate for the loss. While
failures are assumed to be permanent, the system was designed to be able to come
back up from a full loss of functionality.

6.2.2 Replication

xFS does not support replication of files. Instead, it supports a RAID approach for
storing data, as outlined in Fig. 6.1. In xFS, servers are organized into stripe groups.
Each stripe group is a subset of the set of data servers. When a client writes to a
file, it is gathered into a write block that is held in the client’s cache. In Fig. 6.1,
there are two clients, each building their own write block. Once the write block is
full, the data is sent to the server group to be written to file. For a server group with
N servers, the file is split into N-1 pieces, and striped in a RAID pattern across all
the servers. The Nth stripe is a parity block that contains the XOR of all the other
pieces, and is shown as a striped block in Fig. 6.1. This parity block will go to the
parity server for the group. This way, if a server is lost, or a piece becomes corrupted
it can be restored. One downside to this approach is that if multiple servers from
a group go down, the data may be permanently lost, and xFS will stop working. In
general, the replication level of a file can never be greater than the number of servers
in the server group.

6.2.3 Data Access

In xFS a client will connect to a system manager, which will look up the appropri-
ate server group, and have the client connect to the server group leader. In general,
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this takes about 3 hops (not including the actual transmission of data). Generally,
the system will attempt to move data to be as close to the user as possible (in
many cases, the design expects the client to be running on a machine that is also
acting as a data server), incurring the short term penalty in network traffic of mov-
ing a file for the long term bonus of not needing further interaction with a system
manager.

6.2.4 Integrity

Because of the RAID backend of xFS, data corruption can be detected and repaired
using the parity block computed when data is written. xES also uses this information
to recover missing stripe blocks when a server in a stripe group fails.

6.2.5 Consistency and Guarantees

xFS guarantees read-what-you-wrote consistency, but it also allows users to read
stale data — meaning that the best overall consistency guarantee that it can achieve is
eventual. It is also not clear that the system can effectively handle concurrent writes.
xFS never made it to a production environment, so there was never a strong need to
establish any guarantees governing access times. Additionally, XFS was designed to
handle flux in the number of available servers.
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6.2.6 Metadata

The main advantage of xFS is its fully dynamic structure. The idea is to be able to
move data around to handle load fluctuations and to increase locality. The system
uses metadata information to help locate all files and put them back together in
order.

6.2.7 Data placement

Managers in xFS try to ensure that data is being held as close to the client access-
ing it as possible—in some cases even shifting the location of data as a client starts
writing to it. While this seems unwieldy, XFS uses a log-based storage method, so
there is not too much of a network hit as data is shifted with a new write closer to
the current client.

6.2.8 Security

xFS was designed to be run in a trusted environment, and it is expected that clients
are running on machines that are also acting as storage servers. It is, however, possi-
ble for XFS to be mounted and accessed from an unsafe environment. Unfortunately,
this is more inefficient and results in much more network traffic. It is also possible
for a rogue manager to start indiscriminately overwriting data that can cause the
entire system to fail.

6.3 Amazon S3

The Simple Storage Service (S3) from Amazon is used by home users, small
businesses, academic institutions, and large enterprises. With S3 (Simple Storage
Service), data can be spread across multiple servers around the US and
Europe (S3-Europe). S3 offers low latency, infinite data durability, and 99.99%
availability.

6.3.1 Data Access and Management

S3 stores data in 2 levels: a top level of buckets and data objects. Buckets are similar
to folders, and can hold an unlimited number of data objects. Each Amazon Web
Services (AWS) account can have up to 100 buckets. Charging for S3 is computed
at the bucket level. All costs levels are tiered, but the basic costs as of January 2010
are as follows: storage costs $0.15/GB/month in the US, $0.165 in N California,
and $0.15/GB/month in Europe; $0.10/GB for uploads (free until July 2010) and
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$0.17/GB for downloads; and $0.01/1,000 PUT, COPY, POST, or LIST operations,
$0.001/10,000 GET and all other operations. Each data object has a name, a blob
of data (up to 5 GB), and metadata. S3 imposes a small set of predefined metadata
entries, and allows for up to 4 KB of user generated {name, value} pairs to be added
to this metadata.

While users are allowed to create, modify, and delete objects in a bucket, S3
does not support renaming data objects or moving them between buckets—these
operations require the user to first download the entire object and then write the
whole object back to S3. The search functions are also severely limited in the cur-
rent implementation. Users are only allowed to search for objects by the name of
the bucket-the metadata and data blob itself cannot be searched.

Amazon S3 supports three protocols for accessing data: SOAP, REST, and
BitTorrent. While REST is most popularly used for large data transfers, BitTorrent
has the potential to be very useful for the transfer of large objects.

6.3.2 Security

While clients use a Public Key Infrastructure (PKI) based scheme to authenticate
when performing operations with S3, the user’s public and private keys are gener-
ated by Amazon and the private key is available through the user’s AWS site. This
means that the effective security is down to the user’s AWS password, which can be
reset through email. Since S3 accounts are linked directly to a credit card, this can
potentially cause the user a lot of problems.

Access control is specified using access control lists (ACL) at both the bucket
and data object level. Each ACL can specify access permissions for up to 100 iden-
tities, and only a limited number of access control attributes are supported: read for
buckets or data objects, write for buckets, and, finally, reading and writing the ACL
itself. The user can configure a bucket to store access log records. These logs contain
request type, object accessed, and the time the request was processed.

6.3.3 Integrity

The inner workings of Amazon S3 have not been published. It is hard to deter-
mine their approach to error detection and recovery. Based on the reported usage
(Palankar, Tamnitchi, Ripeanu, & Garfinkel, 2008), there was no permanent data
loss.

6.4 Dynamo

Dynamo is the back end for most of the services provided by Amazon. Like S3 it is
a distributed storage system. Dynamo stores data in key-value pairs, and sacrifices
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consistency for availability. Dynamo has been designed to store relatively small files
(~1 MB) and to retrieve them very quickly. A web page may have several services
which each have their own Dynamo instance running in the background — this is
what leads to the necessity of making sure latency is low when retrieving data.

Dynamo uses consistent hashing to make a scalable system. Every file in the
system identified by a key is hashed, and this hash value is used to determine which
node in the system it is assigned to. This hash space is treated as a ring, which is
divided into Q equally sized partitions. Each node (server) in the system is assigned
an equal number of partitions. An example of this can be seen in Fig. 6.2. In this
figure, there are a total of 8 partitions. Nodes A, B, and C are responsible for keeping
copies of all files where the hashed key falls into the striped partition that they
manage.

Fig. 6.2 Dynamo hash ring @

6.4.1 Checkpointing

Dynamo nodes share information via a gossip based protocol. There are no regular
heartbeats sent between the nodes. All communication is pushed by client requests.
If there is no request for data, the nodes do not communicate and do not care if
another node is down. Periodic tests to see if a node is available occur only if a node
is found to be unreachable during a client request.

6.4.2 Replication

With Dynamo, a quorum-like system is used to determine if a read or write was
successful. If enough nodes reply that a write/read was successful, the whole opera-
tion is considered successful — even if not all N replicas are written to or read from.
Dynamo allows the service writer to specify not only N, but R and W as well. R is
the number of successful reads necessary for the whole operation to be successful,
and W is the number of writes. Dynamo will report a successful write if W-1 nodes
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report success, so to make a system that is always up, and will never reject a write,
W can be set to 1. Generally, W and R are both less than N, so that the system can
make progress in the presence of failures. A suggested configuration for Dynamo is
to have R + W > N. A general configuration of (N,R,W) is (3,2,2).

6.4.3 Failures

Dynamo operates under the assumption that hardware failures are expected, and
trades data consistency guarantees for availability. It uses a gossip-based system to
detect failures of nodes. Once a node stops responding, other nodes will eventually
propagate knowledge of the failure. As a design feature, nodes are not considered
removed unless an administrator issues an explicit removal command — this means
the system will gracefully handle transient downtimes. If a coordinator cannot reach
a node for a write, it will simply pass the data on to the next available node in the
hash ring. This will contain an extra bit of metadata that marks it as belonging
elsewhere. Once a node comes back online, this information can be passed back
to it.

If a node is not available, the data presumed to be on that node is not immediately
replicated on another node — this only happens when an administrator explicitly
removes the node via a command. Dynamo is built under the expectation that there
will be many transient failures, so there is no scramble to ensure replication levels
are met when a node stops responding to requests. Because of this, some reads may
fail if R is set equal to N. Once a node has been explicitly removed, all key ranges
previously held by that node are reassigned to other nodes while ensuring that a
given node is not overloaded as a result of this redistribution.

6.4.4 Accessing Data

Dynamo’s gossip-based protocol for node discovery ensures that all nodes know
in one step the exact node to send a read or write request to. There are two main
methods of accessing data: (1) using a dedicated node to handle client requests or
(2) having several dedicated nodes, or coordinators, that process client requests and
forward them to the appropriate nodes. The former approach can lead to unbalanced
network nodes while the latter approach results in a more balanced network and a
lower latency can be assured.

6.4.5 Data Integrity

There is no specific mention of detecting corruptions in data, or how any corre-
sponding error recovery may occur. Since data is stored as a binary object, it may be
left up to the application developers to detect data corruption, and handle any sort
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of recovery. Reported results in live settings (DeCandia et al., 2007), do not indicate
permanent data loss. Amazon requires regular archival of every system — there is a
chance that this archival data is used for recovery if errors in data are found

6.4.6 Consistency and Guarantees

Dynamo guarantees eventual consistency — there is a chance that not all replications
contain the same data. Due to transient network failures and concurrent writes, some
changes may not be fully propagated. To solve this problem, each object also con-
tains a context. This context contains a version vector, giving the ability to track
back through changes and figure out which version of an object should carry the
most precedence. There are several different schemes for handling this. Dynamo
itself supports several simple schemes, including a last-write-wins method. There
is also an interface that allows developers to implement more complex and data
specific merging techniques. Merging of different object versions is handled on
reads. If a coordinator retrieves multiple versions of an object on a read, it can
attempt to merge differences before sending it to the client. Anything that cannot
be resolved by the coordinator is passed onto the client. Any subsequent write from
that client is assumed to have resolved any remaining conflicts. The coordinator
makes sure to write back the resolved object to all nodes that responded to the object
query.

The only other base guarantee provided by Dynamo is performance geared
towards the 99.99th percentile of users — millisecond latencies are assured. Aside
from this, service developers are allowed to tweak the system to fit the guarantees
necessary for their application through the N, R and W settings.

6.4.7 Metadata

In Dynamo, the object metadata is referred to as context. Every time data is written,
a context is included. The context contains system metadata and other information
specific to the object such as versioning information. There may also be an extra
binary field which allows developers to add any additional information needed to
help their application run. The metadata is not searchable, and only seems to interact
with Dynamo when resolving version conflicts as mentioned above.

6.4.8 Data Placement

According to DeCandia et al. (2007), there are guarantees in place to ensure that
replicas are spread across different data centers. It is likely that Amazon has a par-
ticular scheme that allows Dynamo to efficiently determine the locations of nodes.
An object key is first hashed to find its location on the network ring. Moving around



6 Survey of Storage and Fault Tolerance Strategies Used in Cloud Computing 147

the ring clockwise from that point, the first encountered node is where the first copy
of the data is placed. The next N-1 nodes (still moving clockwise) will contain
replicas of the data.

There are no current methods of data segregation in Dynamo — there is simply
a get () and put () interface for developers, and no support for a hierarchical
structure. Each service using Dynamo has its individual instance of it running. For
example, your shopping cart will not be able to access the best seller’s list. On the
other hand, Dynamo has no guarantees that the different instances are not running
on the same machine.

6.4.9 Security

Dynamo has been designed to run in a trusted environment, so there is no structure
in place to handle security concerns. By design, each service that uses Dynamo
has its own separate instance running. Because of this, users do have some sense
of security, as there is some natural separation of data, and one application cannot
access the data of another.

6.5 Google File System

The Google File System (GFS) is designed by Google to function as a backend for
all of Google’s systems. The basic assumption underlying its design is that com-
ponents are expected to fail. A robust system is needed to detect and work around
these failures without disrupting the serving of files. GFS is optimized for the most
common operations — long, sequential and short, random reads, as well as large,
appending and small, arbitrary writes. Additionally, a major goal in designing GFS
was to efficiently allow concurrent appends to the same file. As a design goal,
high sustained bandwidth was deemed more important than low latency in order
to accommodate large datasets.

A GFS instance contains a master server and many chunk servers. The master
server is responsible for maintaining all file system metadata and managing chunks
(stored file pieces). There are usually also several master replicas, as well as shadow
masters which can handle client reads to help reduce load on a master server. The
chunk servers hold data in 64 MB-sized chunks.

6.5.1 Checkpointing

In GFS, the master server will keep logs tracking all chunk mutation. Once a log file
starts to become too big, the master server will create a checkpoint. These check-
points can be used to recover a master server, and are used by the master replicas to
bring a new master process up.
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6.5.2 Replication

By default, all GFS maintains a replication level of 3. This is, however, a config-
urable trait: “.. .users can designate different replication levels for different regions
of the file namespace” (Ghemawat, Gobioff, & Leung, 2003). For example, a temp
directory generally has a replication level of 1, and is used as a scratch space. The
master server is responsible for ensuring that the replication level is met. This not
only involves copying over chunks if a chunk server goes down, but also removing
replicas once a server comes back up. As a general rule, the master server will try
to place replicas on different racks. With Google’s network setup, the master is able
to deduce the network topology from IP addresses.

6.5.3 Failures

When it comes to failures, GFS always expects the worst. The master server reg-
ularly exchanges heartbeats with the chunk servers. If the master server does not
receive a heartbeat from a chunk server in time, it will assume the server has died,
and will immediately start to spread the chunks located on that server to other
servers to restore replication levels. Should a chunk server recover, it will start to
send heartbeats again and notify the master that it is back up. At this point the mas-
ter server will need to delete chunks in order to drop back down to replication level
and not waste space. Because of this approach, it would be possible to wreak havoc
with a GFS instance by repeatedly turning on and off a chunk server. Master server
failure is detected by an external management system. Once this happens, one of the
master server replicas is promoted, and the master server process is started up on it.
A full restart usually takes about 2 minutes — most of this time is spent polling the
chunk servers to find out what chunks they contain

6.5.4 Data Access

Clients initially contact the master server to gain access to a file, after which the
client interacts directly with the necessary chunk server(s). For a multi terabyte file,
a client can keep track of all chunk servers in its cache. The chunk server directly
interacting with clients is granted a chunk lease by the master server, and is now
known as the primary. The primary is then responsible for ordering any operations
on the data serially. It is then responsible for propagating these changes to the other
chunk servers that hold the chunk. If a client is only looking to read data, it is possi-
ble for the client to go through the shadow master as opposed to the master server. It
is possible for concurrent writes to get interleaved in unexpected ways, or for failed
write attempts to show themselves as repeated data in chunks. GFS assumes that
any application using it is able to handle these possible problems though redundant
data may hurt the efficiency of reads.
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6.5.5 Data Integrity

Each chunk in GFS keeps track of its own checksum information this informa-
tion is unique for each chunk — it is not guaranteed to be the same even across
replicas. Chunk servers are responsible for checking the checksums of the chunks
they are holding. With this, it is possible for the system to detect corrupted files.
If a corrupted chunk is detected, the chunk is deleted, and copied from another
replica.

6.5.6 Consistency and Guarantees

GEFS is built to handle multiple concurrent appends on a single file. It is up to a pri-
mary chunk server to order incoming permutation requests from multiple clients into
a sequential order, and then pass these changes on to all other replicas. Because of
this, it is possible that a client will not see exactly what they wrote on a sequential
read — there is a possibility that permutations from other clients have been inter-
leaved with their own. Google describes this state as consistent but undefined — all
clients will see the same data, regardless of which replica is primary, but mutations
may be interspersed. When there is a write failure, a chunk may become inconsis-
tent. This is a case where there may be redundant lines of data in some but not all
replicas.

As GFS was built to maintain bandwidth, as opposed to meet a targeted latency
goal there are no guarantees that pertain to latency. GFS does guarantee maintenance
of the specified replication level which is achieved using system heartbeats. GFS
also cannot guarantee full consistency in the face of write failures. A slightly looser
definition of consistency — at least a single copy of all data is fully stored in each
replica — is what GFS supplies. Any application built on top of GFS that can handle
these possible inconsistencies should be able to guarantee a stronger consistency.

6.5.7 Metadata

In GFS, the master server contains metadata about all chunks contained in the sys-
tem. This is how the master server keeps track of where the chunks are located. Each
chunk has its own set of metadata as well. A chunk has a version number, as well as
its own checksum information.

6.5.8 Data Placement
The master server attempts to place replicas on separate racks, a feat made possible

by Google’s network scheme. The master server also attempts to balance network
load, so it will try to evenly disperse all chunks.
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6.5.9 Security Scheme

GFS expects to be run in a trusted environment, and has no major security
approaches. If a user could bring down a chunk server, modify the chunk versions
held on it, and reconnect it to the system, GFS would slowly grind to a halt as it
believes that that server has the most up-to-date chunks and begins deleting and
rewriting all these chunks. This would create a lot of network traffic, and theoreti-
cally bring down not only any service that relies on GFS, but also anything else that
requires network bandwidth to work.

6.6 Bigtable

As the name suggests, Bigtable stores large amounts of data in a table. While it is
not a full relational model, it is essentially a multi-dimensional database. Tables are
indexed by row and column keys (strings), as well as a timestamp (int64).
Values inside cells are an uninterpreted array of bytes, and tables can be easily used
as either inputs to or outputs of MapReduce (Dean & Ghemawat, 2004). Each table
is broken up by row into tablets. Each tablet will contain a section of sequential
rows, generally about 100-200 MB in size.

Bigtable has been designed by Google to handle very large files generally mea-
suring in the petabyte range. It is in use in several products, including Google
Analytics and Google Earth. Bigtable is designed to run on top of the Google
File System (GFS), and inherits its features and limitations. Bottlenecks with GFS
directly affect Bigtable’s performance, and measures have been taken to avoid
adding too much to network traffic. Additionally, Bigtable relies on Chubby for
basic functionality. Chubby is a locking service which implements Lamport’s Paxos
theorem (Lamport, 2001) in use at Google to help clients share information about the
state of their environment (Burrows, 2006). Different systems make use of Chubby
to keep separate components synchronized. If Chubby goes down, then so does
Bigtable. Given that, Chubby has been responsible for less than .001% of Bigtable’s
downtime as reported in Chang et al. (2006). Bigtable processes usually run on top
of GFS servers, and have other Google processes running side-by-side. Ensuring a
low latency in this environment is challenging.

There are 3 pieces to an implementation of Bigtable: First, a library is linked to
every client — helping clients find the correct server when looking up data. Second,
there is a single master server. This master server will generally have no interactions
with clients, and as a result is usually only lightly loaded. Finally, there are many
tablet servers. The tablet servers are responsible for communicating with clients,
and do not necessarily serve consecutive tablets; simply what is needed. Each tablet
is only served on one tablet server at a time. It is also not necessary for all tablets
to be served — the master keeps a list of tablets not currently served, and will assign
these tablets to a server if a client requests access to it.

Tablets are stored in GFS as in the SSTable format, and there are generally several
SSTables to a tablet. An SSTable contains a set of key/value pairs, where both key
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and value are arbitrary strings. Updates to tablets are kept in a commit log. Recently
committed changes are stored in memory, and older tablet update records are stored
as SSTable. Figure 6.3 helps to show the division of what is maintained in GFS and
what is kept in tablet server memory. Both the commit logs and SSTable files are
held in GFS. Storing commit files in GFS means that all commits can be recovered
if a tablet server dies. These commit logs are as close as Bigtable comes to actual
checkpointing — more thorough checkpointing is carried out by GFS.

6.6.1 Replication

As mentioned above, the Bigtable master server makes sure that only one server is
actually modifying a tablet at a time. While this looks like Bigtable is ignoring repli-
cation entirely, every tablet’s SSTables are actually being stored in GFS. Bigtable
neatly bypasses the problem of replication and lets GFS handle it. Bigtable will
inherit the replication level of the folders where the SSTables are stored.

6.6.2 Failures

All failure detection for Bigtable eventually comes down to Chubby. When a tablet
server first starts up, it contacts Chubby and makes a server-specific file, and obtains
an exclusive lock on it. This lock is kept active as long as the tablet has a connection
to Chubby, and will immediately stop serving tablets if it loses that lock. If a tablet
server ever contacts Chubby and finds the file gone, it will kill itself. The master
server is responsible for periodically polling the tablet servers and checking to see if
they are still up. If the master cannot contact a tablet server, it first checks to see if the
tablet server can still communicate with Chubby. It does so by attempting to obtain
an exclusive lock on the tablet server file. If the master obtains the lock, Chubby
is alive and the tablet can’t communicate with Chubby. The master then deletes the
server file, ensuring that the server will not attempt to serve again. If the master’s
Chubby session expires, the master immediately kills itself without effecting tablet
serving. A cluster management system running alongside Bigtable is responsible
for starting up a new master server if this happens. While (Chang et al., 2006) does
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not explicitly state what happens if Chubby goes down, it is likely that the current
master server will kill itself and the cluster manager will repeatedly try to kick start
a new master until Chubby starts responding again.

6.6.3 Accessing Data

Every client is initially sent a library of tablet locations, so they should initially be
able to directly contact the correct tablet server. Over time, tablet servers die, some
may be added, or tablets may be deleted or split. Bigtable has a 3-tier hierarchy for
tablet location. First, there is a file stored in Chubby that contains the location of
the root tablet. Every Bigtable instance has its own root tablet. A root tablet speci-
fies the location of all tablets in a METADATA table. This METADATA table holds
the locations of all user tables as well as some tablet-specific information useful for
debugging purposes. The root tablet is simply the first tablet of the METADATA
table. The root tablet is treated specially — it is never split so that the tablet location
hierarchy doesn’t grow. With this scheme, 234 tablet locations can be addressed.
The client library caches the tablet locations from the METADATA table, and will
recursively trace through the hierarchy if it doesn’t have a tablet, or the tablet loca-
tion is scale. With an empty cache, it will take 3 round trips but may take up to 6
with a stale cache. None of these operations need to read from GFS, so the time is
negligible. The tablet servers have access to sorted SSTables, so they can usually
locate required data (if not already in memory) with a single disk access.

6.6.4 Data Integrity

Bigtable is not directly involved with maintaining data integrity. All Bigtable data is
stored in GFS, and that is what is responsible for actually detecting and fixing any
errors that occur in data. When a tablet server goes down there is a chance that a
table modification was not committed, or a tablet split was not properly propagated
back to Chubby. Keeping all tablet operation logs in GFS as well solves the first
problem: a new tablet server can read through the logs, and ensure all tablets are up
to date. Tablet splits are even less of a problem, as a tablet server will report any
tablets it has that are not referenced by Chubby.

6.6.5 Consistency and Guarantees

Bigtable guarantees eventual consistency — all replicas are eventually in sync. Tablet
servers store any tablet modifications in memory, and will write permutations to a
log, but will not necessarily wait for GFS to confirm that a write has succeeded
before confirming it with users. This helps to improve latency, and give users a
more interactive experience, such as when using Google Earth. Bigtable inherits
all of the GFS guarantees pertaining to data replication, error recovery, and data
placement.
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6.6.6 Metadata

The METADATA table contains the metadata for all tablets held within an instance
of Dynamo. This metadata includes lists of the SSTables which make up a tablet, and
a set of pointers to commit logs for the tablet. When a tablet server starts serving a
file, it first reads the tablet metadata to learn which SSTable files need to be loaded.
After loading the SSTables into memory, it works through the commit logs, and
brings the version in memory up to the point it was at when the tablet was last
accessed.

6.6.7 Data Placement

All of Bigtable’s data placement is handled by GFS — it has no direct concern
for data placement. As far as Bigtable is concerned, there are only single copies
of files — it uses GFS handles to access any files needed. While Bigtable is not
directly aware of multiple versions of files, it can still take advantage of replicas
through GFS.

6.6.8 Security

Bigtable is designed to run in a trusted environment, and does not really have much
in the way of security measures. Theoretically, a user may be able to have encrypted
row and column names, as well as the data in the fields. This would be possible
since these are all arbitrary strings. While encrypting row names means you could
potentially use some of the grouping abilities, there is no reason a user would not be
able to gain some security with this method.

6.7 Microsoft Azure

Azure is Microsoft’s cloud computing solution. It consists of three parts: storage,
scalable computing, and the base fabric to hold everything together across a het-
erogeneous network. Figure 6.4 shows a high level overview of Azure’s structure.

Compute m‘

Fabric

DDD---0

Fig. 6.4 Azure overview
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Both the compute and storage levels rely on the fabric layer, which is running across
many machines. Azure’s scalable computing component is out of the scope of this
article, but for the sake of completeness it is mentioned here. Microsoft’s computing
solution is designed to make sure that it worked well with the storage, but it is not
necessary to use the one to use the other. Microsoft has not published very many
details about Azure.

Azure’s storage service allows the user to choose between three storage formats:
BLOBs, tables, and queues. The BLOBs are essentially containers that can hold
up to 5 GB of binary data. Azure’s BLOB format is very similar to S3 — there are
containers to hold the BLOBs, and there is no hierarchical support (you cannot put
a container inside a container). The BLOB names have no restrictions, however, so
there is nothing to keep a user from putting in “/”” in a BLOB’s name to help orga-
nize data. Tables in Azure are not true relational tables, but more like Bigtable —
tables hold entities, and an entity is a list of named values. While you lose the
ability to query Azure tables like a true relational database, it is able to scale effec-
tively across many machines. Azures queues are primarily designed for use with the
computing service. Queues are what allow different applications a user is running
to communicate with each other. For example, a user may have designed a web
front-end application that can communicate with several worker applications to per-
form back-end processing. This application suite would use queues to exchange
information between the web front-end and the various workers.

6.7.1 Replication

Regardless of storage type, all data has a replication level of 3 the maintenance
of which is being coordinated by the storage service itself. According to Chappell
(2009a), the fabric service is not even aware of replication levels, it just sees the
storage service as another application. More about how this happens is in the failure
section.

6.7.2 Failure

Azure’s fabric layer is made up of machines in a Microsoft Data Center. The data
center is divided into fault domains. Microsoft defines a fault domain as a set of
machines which can be brought down by the failure of a single piece of hard-
ware. All machines dedicated to Azure are controlled by 5-7 fabric controllers.
Each machine inside the fabric has a fabric controller process running which reports
the status of all applications running on that machine (this includes user apps in
different VMs as well as the storage service). While we are not exactly clear on
how storage is handled inside the fabric, we do know that the fabric controllers see
the storage service as just another application. If an application dies for any reason,
the controllers are responsible for starting up another instance of the application. It
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stands to reason that if an instance of the storage service running on a machine dies,
or if the machine itself dies, these controllers would start up another instance on
a different machine. By having the fabric layer ensure that applications are spread
across fault domains, it guarantees that replicas are spread out.

6.7.3 Accessing Data

If a user is using a .NET application running on Azure’s compute service, ADO
.NET interfaces can be used. If, on the other hand, a user is trying to access data
in Azure storage through a Java application, you would use standard REST. As an
example of accessing a BLOB from (Chappell, 2009b):

http://<StorageAccount>.blob.core.windows.net/<Container>/<BlobName>

Where <StorageAccount> is an identifier assigned when a new storage
account is created, used to identify ownership of objects. <Container> and
<BlobName> are the names of the container and blob that this request is accessing.

There is no specific mention of any guarantees on latency, but since it is expected
to be part of a web application, it’s likely low.

6.7.4 Consistency and Guarantees

Azure’s storage guarantees read-what-you-write consistency — worker threads and
clients will be able to immediately see changes it just wrote. Unfortunately, there
is no clear picture of what this means for other threads/clients. It also guarantees a
replication level of 3 for all stored data. There have also been no specific guarantees
as to latency or specific mention of SLAs.

6.7.5 Data Placement

The Azure fabric layer is responsible for the placement of data. While it is not
directly aware of replicas, it is able to ensure that instances of the storage service
are running in different fault domains. From the whitepapers Microsoft has made
available, it looks like a fabric controller only operates in one data center. There is
a chance that users are able to choose which data center to use.

6.7.6 Security

All access to Azure’s storage component is handled by a private key generated
by Azure for a specific user. While there are no particular details about how this
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happens, it is likely that this is susceptible to the same problems as S3 — another
person may be able to hijack this key. In Azure storage, there are no ACLs, only
that single access key — developers are expected to provide their own authentication
program-side.

6.8 Transactional and Analytics Debate

None of the storage systems discussed here are able to handle complex relational
information. As data storage makes a shift to the cloud, where does that leave
databases? Having on-site data management installations can be very difficult to
maintain, requiring administrative and hardware upkeep as well as the initial hard-
ware and software costs (Abadi, 2009). Being able to shift these applications to
the cloud would allow companies to focus more on what they actually produce —
possibly having the same effects that the power grid did 100 years ago (Abadi,
2009).

Transactional data management is what you generally think of first — the back-
bone for banks, airlines, and e-commerce sites. Transactional systems generally
have a lot of writes, and files tend to be in the GB range. They usually need ACID
guarantees, and thus have problems adjusting to the limitations of Brewer’s CAP
theorem. Transactional systems also generally contain data that needs to be secure,
such as credit card numbers and other private information. Because of these rea-
sons, it is hard to move a transactional system to the cloud. While several database
companies, such as Oracle, have versions that can run in a distributed environment
like Amazon’s EC2 cloud, licensing can become an issue (Armbrust et al., 2009).
Instead of only needing one license, the current implementation requires a separate
license for each VM instance: as an application scales, this can become prohibitively
expensive.

Analytical data management is slightly different. In an analytical system, there
are generally more reads than writes, and writes occur in large batches. These types
of systems are used to analyze large datasets, looking for patterns or trends. Files in
an analytical system are also on a completely different scale — a client may need to
sift through petabytes of data. For this type of system, looser eventual consistency
is acceptable — making it a good fit for distributed computing. Additionally, the data
analyzed usually has less need to be secure, so having a third-party such as Amazon
or Google hosting the data is acceptable.

6.9 Conclusions

In this chapter we have surveyed several approaches to data storage in cloud com-
puting settings. Data centers have, and will continue, to be built out of commodity
components. The use of commodity components combined with issues related to the
settings in which these components operate such as heat dissipations and scheduled
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downtimes imply that failures are a common occurrence and should be treated as
such. In these environments, it is no longer a matter of if a system or component
will fail, but simply when. Datasets are dispersed on a set of machines to cope with
their voluminous nature and to enable concurrent processing on them. To cope with
failures, every slice of the dataset is replicated a preset number of times; replica-
tion allows applications to sustain failures to machines that hold certain slices of the
dataset and also to initiate error corrections due to data corruptions.

The European Network and Information Security Agency (ENISA) recently
released a document (Catteddu & Hogben, 2009) outlining the security risks in
cloud computing settings. Among the concerns raised in this document include
data protection, insecure or incomplete data deletion, and the possibility of mali-
cious insiders. Other security related concerns (Brodkin, 2008) that have been raised
include data segregation, control over a data’s location, and investigative support.
Most of the systems that we have described here do not adequately address sev-
eral of these aforementioned security concerns and also exacerbate the problem
by designing systems that are presumed to operate in a trusted environment: this
allows us to construct situations, in some of these systems, where a malicious
entity can wreak havoc. Issues related to security and trust need to be thoroughly
addressed before these settings can be used for mission critical and sensitive
information.
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Chapter 7

Scheduling Service Oriented Workflows Inside
Clouds Using an Adaptive Agent Based
Approach

Marc Eduard Frincu

Abstract As more users begin to use clouds for deploying complex applications
and store remote data there is an increasing need of minimizing the user costs. In
addition many cloud vendors start offering specialized services and thus the need
of selecting the best possible service in terms of deadline time or monetary con-
straints emerges. Vendors not only that provide specialized services but also prefer
using their own scheduling policies and often choose their negotiation strategies. To
make things even more complicated complex applications are usually comprised of
smaller tasks (e.g. workflow applications) orchestrated together by a composition
engine. In this highly dynamic and unpredictable environment multi-agent systems
seem to provide one of the best solutions. Agents are by default independent as
they act in their best interest following their own policies, but also cooperate with
each other in order to achieve a common goal. In the frame of workflow schedul-
ing the goal is represented by the minimization of the overall user cost. This paper
presents some of the challenges met by multi-agent systems when trying to schedule
tasks. Solutions to these issues are also given and a prototype multi agent scheduling
platform is presented.

7.1 Introduction

In recent years Cloud Computing (CC) emerged as a leading solution in the field of
Distributed Computing (DC). In contrast, Grid Computing lacked the open-world
vision of overcoming some fundamental problems including transparent and easy
access to resources, licensing or political issues, lack of virtualization support or to
complicated to use architectures and end-user tools.

Clouds have emerged as a main choice for service vendors mostly due to
their support for virtualization and service oriented approach. Inside clouds almost
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everything can be offered as a service. This has led to the appearance of sev-
eral paradigms including Software as a Service (SaaS), Infrastructure-as-a-Service
(TaaS) or Platform-as-a-Service (PaaS).

As more users begin to use clouds for storing or executing their applications these
systems become susceptible to workload related issues. The problem is even harder
when considering complex tasks which require accessing services provided by dif-
ferent cloud vendors (see Fig. 7.1) each with their own internal policies. Selecting
the optimal/fastest service for a specific task becomes in this case an important
problem as sometimes users are paying for their time spent using the underlying
services.

Consequently scheduling tasks on services becomes even more difficult as inside
cloud environments each member uses its own policies and is not obligated to adhere
to outside rules. We end up with a bundle of services from various providers that
need to be orchestrated together in order to produce the desired outcome inside a
given time interval. Keeping the execution inside this interval minimizes production
and client costs. As service selection requires some negotiation between providers
one of the simplest and straightforward solutions is to use distributed agents that
play the roles of service providers and clients.

This paper presents an agent based approach to the problem of task schedul-
ing inside clouds. Two major problems are dealt with: finding cloud resources and
orchestrating services from different cloud vendors towards solving a common goal.
Certain deadline and cost constrains are assumed to exist. Even though the emphasis
is put on workflow tasks, independent tasks can also be handled. Towards this aim
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Fig. 7.1 Connecting devices to some of the existing clouds
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we first present some solutions to the problem of task scheduling inside clouds.
Then we present some issues regarding task scheduling inside Service Oriented
Environments (SOE) together with some details on workflow scheduling. A detailed
overview on a distributed agent based scheduling platform architecture capable of
adapting itself to resource changes is also given. Finally a concrete experimental
prototype and some conclusions are presented.

7.2 Related Work on DS Scheduling

Lot of work has been carried out in what concerns task scheduling inside Distributed
Systems (DSs). This work can be divided into specialized Scheduling Algorithms
(SAs) for clouds and Resource Management Systems (RMS) which discover ser-
vices and allocate tasks to them. In what follows we briefly present some of the
main work concerning both SAs for CC and RMS for DSs.

Concerning the development of efficient SAs for DSs, nature has proven to be a
good place of inspiration. Recent papers such as Lorpunmanee, Sap, Abdullah, &
Chompooinwai (2007) and Ritchie and Levine (2004) try to cope with the prob-
lem of task scheduling by offering meta-heuristics inspired from behavioral patterns
observed in ant colonies. This technique also called Ant Colony Optimization
(ACO) relies on the fact that ants inside a colony act as independent agents which
try to find the best available resource inside their space by using global search tech-
niques. Each time such an agent finds a resource better than the already existing
one it marks the path to it by using pheromones. These attract other ants which start
using the resource until a better one is found.

In Banerjee, Mukherjee, and Mahanti (2009) an ACO based approach for initiat-
ing the service load distribution inside clouds has been proposed. Simulated results
on Google Application Engine (2010) and Microsoft Live Mesh (2010) have shown
a slight improvement in the throughput of cloud services when using the proposed
modified ACO algorithm.

The biggest disadvantage ACO has over other approaches is that it is not
very effective when dynamic scheduling is considered. The reason for this is that
rescheduling requires a lot of time until an optimal scenario is reached through
intensive training given by multiple iterations. Because DSs are both unpredictable
and heterogeneous each time a change is noticed the entire system needs to be
trained again. This process which could last several hours. The large retraining time
interval is not acceptable when tasks are scheduled under deadline constraints as the
scheduling could take longer than the actual task execution. An improvement on this
might be given by mixing the time consuming global search with local search when
minor changes occur inside the DS. However defining the notion of minor changes
is still an open issue.

Paper (Garg, Yeo, Anandasivam, & Buyya, 2009) deals with High Performance
Computing (HPC) task scheduling inside clouds. Energy consumption is impor-
tant both in what concerns the user costs and in relation to the carbon emissions.
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The proposed meta-scheduler takes into consideration factors such as energy costs,
carbon emission rate, CPU efficiency and resource workflows when selecting an
appropriate data center belonging to a cloud provider. The designed energy based
scheduling heuristics shows a significant increase in energy savings compared with
other policies.

Most of the work concerning RMSs has evolved around the assumption of apply-
ing them onto grids and not clouds. This can be explained by two facts. The first one
is that there are many similarities between a cloud and a grid and RMS developed
for one type could also work well on the other. The second one is related with age,
and as grids emerged earlier than clouds most of the solutions have been developed
for the former. Nonetheless several of the grid oriented RMSs could be adapted to
work for clouds too.

One example is represented by the Cloud Scheduler (2010). It allows users to set
up a Virtual Machine (VM) and submit jobs to a Condor (Thain, Tannenbaum, &
Livny, 2005) pool. The VM will be replicated on machines and used as container
for executing the jobs.

In what follows we present some of the most known examples of RMS for DSs
in general.

Notable examples include the Globus-GRAM (Foster, 2005), Nim- rod/G
(Buyya, Abramson, & Giddy, 2000), Condor (Thain et al., 2005), Legion (Chapin,
Katramatos, Karpovich, & Grimshaw, 1999), NetSolve (Casanova & Dongarra,
1998) and others. Many of these solutions use fixed query engines to discover
and publish resources and do not rely on the advantages offered by distributed
agents.

The ARMS (Cao, Jarvis, Saini, Kerbyson, & Nudd, 2002) system represents an
example of agent based RMS. It uses PACE (Cao, Kerbyso, Papaefstathiou, & Nudd,
2000) for application performance predictions which are later used as inputs to the
scheduling mechanism.

In paper (Sauer, Freese, & Teschke, 2000) a multi-site agent based schedul-
ing approach consisting of two distinct decision levels one global and the other
local is presented. Each of these levels has a predictive and a reactive compo-
nent for dealing with workload distribution and for reacting to changes in the
workloads.

Paper (Cao, Spooner, Jarvis, & Nudd, 2005) presents a grid load balancing
approach by combining both intelligent agents and multi-agent approaches. Each
existing agent is responsible for handling task scheduling over multiple resources
within a grid. As in Sauer et al., (2000) there also exists a hierarchy of agents which
cooperate with each other in a peer to peer manner towards a common goal of find-
ing new resources for their tasks. This hierarchy is composed of a broker, several
coordinators and simple agents. By using evolutionary processes the SAs are able
to cope with changes in the number of tasks or resources.

Nimrod/G uses agents (Abramson, Buyya, & Giddy, 2000) to handle the setup of
the running environment, the transport of the task to the site, its execution and the
return of the result to the client. Agents can also record information acquired during
task execution as CPU time, memory consumption etc.
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Paper (Shen, Li, Genniwa, & Wang, 2002) proposes a system which can auto-
matically select from various negotiation models, protocols or strategies the best
one for the current computational needs and changes in resource environment. It
does this by solving two main issues DS have to dealt with Cao et al., (2002):
scalability and adaptability. The work carried in Shen et al., (2002) creates an
architecture which uses several specialized agents for applications, resources, yel-
low pages and jobs. Job agents for example are responsible for handling a job
since its submission and until its execution and their lifespan are restricted to
that interval. The framework offers several negotiation models between job and
resource agents including contract net protocol, auction and game theory based
strategies.

AppLeS (Application-Level Scheduling) (Berman, Wolski, Casanova, Cirne,
et al., 2003; Casanova, Obertelli, Berman, & Wolski, 2000) is an example of a
methodology for adaptive scheduling also relying on agents. Applications using
AppLeS share a common architecture and are scheduled adaptively by a customized
scheduling agent. The agent follows several well established steps in order to obtain
a schedule for an application: resource discovery, resource selection, schedule
selection, application execution and schedule adaptation.

7.3 Scheduling Issues Inside Service Oriented Environments

Scheduling tasks inside SOE such as clouds is a particular difficult problem as there
are several issues that need to be dealt with. These include: estimating task runtimes
and transfer costs; service discovering and selection; negotiation between clients
and different cloud vendors; and trust between involved parties. In what follows we
address each of these problems separately.

7.3.1 Estimating Task Runtimes and Transfer Costs

Many SAs require some sort of user estimates in order to provide improved schedul-
ing solutions. The estimates are either user estimated or generated by using methods
involving code profiling (Maheswaran, Braun, & Siegel, 1999), statistical determi-
nation of execution times (David & Puaut, 2004), linear regression (Muniyappa,
2002) or task templating (Ali, Bunn, et al., 2004; Smith, Foster, & Taylor, 2004).
When applied to SOE these methods come both with advantages and disadvantages
as it is shown in the next paragraphs.

In SOE there is not much insight on the resource running behind the service
and thus it is hard for users to obtain information that can help them give a correct
runtime estimate.

User given estimates are dependent on the user’s prior experience with execut-
ing similar tasks. Users also tend to overestimate task execution times knowing
that schedulers rely on them. In this case a scheduler, depending on the schedul-
ing heuristics, could postpone other tasks due to wrong information. To deal with
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these scenarios schedulers can implement penalty systems where tasks belonging to
these harmful users would be intentionally delayed from execution.

Sometimes it is even difficult for users to provide runtime estimates. These sit-
uations usually occur due to the nature of the service. Considering two examples
of services, one which processes satellite images and another one which solves
symbolic mathematical problems we can draw the following conclusions. In the
first case it is quite easy to determine runtime estimates from historical execution
times as they depend on the image size and on the required operation. The second
case is more complicated as mathematical problems are usually solved by services
exposing a Computer Algebra System (CAS). CASs are specific applications which
are focused on one or more mathematical fields and which offer several methods
for solving the same problem. The choice on which method to choose depends on
internal criteria which is unknown to the user. A simple example is given when con-
sidering large integer (more than 60 digits) factorizations. These operations have
strong implications in the field of cryptography. In this case factorizing n does not
depend on similar values as n-1 or n+ 1. Furthermore the factoring time is not linked
to the times required to factor n-1 or n. It is therefore difficult for users to estimate
runtimes in these situations. Refining as much as possible the notion of similarity
between two tasks could be an answer to this problem but in some cases, such as the
one previously presented this could require searching for identical past submissions.

Code profiling works well on CPU intensive tasks but fails to cope with data
intensive applications where it is hard to predict execution time before all the input
data has been received. Statistical estimations of run times face similar problems as
code profiling.

Templating has also been used for assigning task estimates by placing newly
arrived tasks in already existing categories. General task characteristics such as
owner, solver application, machine used for submitting the task, input data size,
arguments used, submission time or start time are used for creating a template.
Genetic algorithms can then be used to search the global space for similarities.

Despite the difficulty in estimating runtimes there are SAs which do not require
them at all. These algorithms take into consideration only resource load and move
tasks only when their loads become unbalanced. This approach works well and tests
have shown that scheduling heuristics such as Round-Robin (Fujimoto & Hagihara,
2004) give results comparable to other classic heuristics based on runtime estimates.

In SOE the problem of providing runtime estimates could be overcome by
another important aspect related with service costs which is execution deadlines.
In this case it does not matter how fast, how slow or where a task gets executed
as long as it gets completed inside the specified time interval. Consequently when
submitting jobs inside clouds users could attach deadline constraints instead of
runtime estimates to either workflows or batch tasks and hope they will not be sig-
nificantly exceeded. Deadline based scheduling heuristics are specifically useful in
cases where users rent services for specific amount of times.

Related with task runtimes is the transfer costs for moving a task from a resource
to another. In SOE this is a problem as usually little or nothing is known about
the physical location and network route towards a particular service. When moving



7 Scheduling Service Oriented Workflows Inside Clouds 165

large amounts of data such as satellite images up to several hundreds of mega-bytes
in size the transfer cost becomes an issue. In addition to the time needed to reallocate
data problems including licensing and monetary cost arise. There are cases when
proprietary data such as satellite images that belong to certain organizations cannot
be moved outside their domain (cloud). In this case reallocation to a cloud which
provides faster and/or cheaper services for image processing is not possible due to
licensing issues.

Task reallocation involves more than simply moving depended data. Clouds rely
heavily on virtualization and thus sometimes in orders to execute tasks VMs with
certain characteristics need to be created. As a result when reallocating a task the
entire VM could require relocation. This implies several other issues such as stop-
ping and resuming preemptive tasks or restarting non-preemptive tasks once they
are safely transfered. The problem of transfer costs is thus more problematic than at
first glance.

7.3.2 Service Discovery and Selection

Services (SOAP-based (Pautasso et al., 2008), RESTful (Pautasso, Zimmermann,
& Leymann, 2008), Grid Services (Foster, 2005)) are an important part of cloud
systems. They allow for software, storage, infrastructure or entire platforms to be
exposed through a unitary interface which can be used by third party clients. Each
service vendor exposes its services to the general public so that the latter can use
them, free or at a cost, in order to solve a particular problem.

Inside this sea of services there is also a constant need of discovering proper ser-
vices for solving a particular task. Universal Description Discovery and Integration
(UDDI) (UDDI, 2010) registries offer a solution to this problem. Each service
provider registers its services to an UDDI which in turn is used by service consumers
for searching specific services. With the occurrence of Web 2.0 these searches could
be enhanced with semantic content. Once such a service is found its interface can
be used for submitting tasks and for retrieving their results. Figure 7.2 shows the
typical correspondence between services, UDDIs and clients.

After successfully finding a number of possible candidate services there remains
the problem of selecting the best one for the task. In this direction the schedul-
ing heuristics plays an important role as based on several criteria it will select the
service which is most likely to minimize the execution costs. It should be noted
that depending on whether the scheduling heuristics is adaptive or not a task could
be reallocated several times before actually being executed. Task reallocation faces
several problems as addressed in Section 7.3.1.

7.3.3 Negotiation Between Service Providers

Negotiation plays an important role in task scheduling when services from mul-
tiple clouds are involved in solving a given problem. Usually the negotiation is
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linked to the phase of service selection and involves a scheduler request for a par-
ticular service characteristic. When considering it smaller execution costs could be
achieved.

Negotiation can also involve the decision on what data/tasks are allowed to
be submitted to the service and whether the service provider can further use the
submitted data/tasks for its own purposes or not.

As most of the times details regarding the VM or application that is exposed as a
service are hidden from public the negotiation requires the introduction of negotiator
entities which handle pre-selection discussions in the service/cloud name. Usually
this stage is accomplished by one or more agents (Cao, Spooner, Jarvis, & Nudd,
2005; Sauer et al., 2000). Details regarding the involved agents will be given in
Section 7.5. Depending on the outcome of the negotiation either access to the desired
service is either granted or a new negotiation with another agent proceeds.

7.3.4 Overcoming the Internal Resource Scheduler

An important problem RMSs need to overcome in SOE is that of the internal sched-
uler used by the service provider. This scheduler is neither influenced nor bypassed
by outside intervention. As a result it is said that scheduling between services is
accomplished by a meta-scheduler (Weissman, 1998) that deals with tasks at ser-
vice level, leaving the resource level scheduling to the internal Virtual Organization
(VO) schedulers (see Fig. 7.3). These internal schedulers handle tasks assignments



7 Scheduling Service Oriented Workflows Inside Clouds 167

Schedules tasks Schedules tasks
inside VO 1 at service level Migrate tasks between inside VO 2 at service level
VOs
Agent . Agent | |
Scheduler | Scheduler

' Internal - s . Internal -
Schedulers Schedulers

Schedule tasks
inside resources

Fig. 7.3 Scheduling and meta-scheduling in multi-VOs

depending on their own policies and thus there is no guarantee that the task submit-
ted by the meta-scheduler will be executed inside the cost constraints negotiated at
the time of the submission.

As a result of the negotiation between the meta-scheduler and the service
provider the latter could try to favor the task by increasing its priority. This action is
in the interest of the provider as it could get penalized, with its service trust greatly
diminished, for constantly exceeding the imposed deadlines. Consequently future
decisions made by the meta-scheduler could ignore the service and the provider
would suffer cost losses. We obtain therefore a symbiotic relationship between the
meta-scheduler and the service provider that allows both of them to gain advantages:
the service provider’s trust will increase when executing tasks faster and thus its
income will increase by receiving more tasks; and the meta-scheduler will execute
tasks faster, minimizing the costs of the client that submitted them.

7.3.5 Trustin Multi-cloud Environments

When executing tasks on remote services a certain trust level between peers is
needed. Trust issued occurs due to many problems including the block box approach
of services and because of security issues.

Services cannot be trusted as their interfaces act as black boxes with the con-
tent changeable without notice. Thus a service requestor needs to be sure that what
it accesses is the same as what was advertised by the service. If this is not the
case then the VM running behind the service would not be able to solve the given
task inflicting possible cost losses due to time spent for service selection and task
submission.

Security issues are also important and are closely linked to the previous problem.
These problems can affect both the service requestor and the service provider. The
former is usually affected when the data it submits is used for other purposes than
those decided during negotiation (e.g. cloning of copyrighted data). The latter can
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also be affected when data intended to harm the vendor is sent to it. A comprehen-
sive insight on the security issues inside DSs is given in paper (Carstea, Macariu,
Frincu, & Petcu, 2008).

Trust is usually achieved through digital certificates such as the X.509 certificates
that are widely used in Web browsers, secure email services, and electronic payment
systems.

When using certificates clients usually request one from service providers in
order to be granted access.

Web-SOAP and Grid-SOAP services handle security issues by using the WS-
Security standard (WS Security, 2010). It allows parties to add signatures and
encryption headers to SOAP messages. An extension to WS-Security, WS-Trust
(WS Trust, 2010), deals with issuing, renewing and validating security tokens or
broker trust relationships between participants.

In addition to the WS-Security standard the Transport Layer Security (TLS) can
also be used. HTTPS for example can be used to cover Web-SOAP, Grid-SOAP and
RESTTful services.

7.4 Workflow Scheduling

Workflows consist of several tasks bound together by data/functional dependencies
that need to be executed in a specific order for achieving the goal of the problem.
They are used especially in cases where the problem can be divided into smaller
steps each of them being executed by a distinct solver, or in our case WS. In a cloud
environment users usually submit their workflows to a service which orchestrates
the execution and returns the result. Whatever happens beyond the service interface
is out of reach and invisible to the client. The workflows can be created either by
using graphical tools (Wolniewicz et al., 2007) or by directly writing the code in
a supported format such as BPEL (WS-BPEL, 2010), YAWL (Van der Aalst & ter
Hofstede, 2005), Scufl (Greenwood, 2010), etc. Once the workflow is submitted an
enactment engine is responsible for executing the tasks by sending them to corre-
sponding WSs. In our case these WSs are replaced by scheduling agents that try
to schedule the tasks on the best available service through negotiation with other
agents. Once a task is completed its result is sent back to the enactment engine
which can proceed to the next task and so forth.

An important problem in this communication chain is the return of the result to
the workflow engine. To solve this problem the address of the agent responsible for
the VO in which the engine is located in is attached to each submitted task. In this
way once the execution is completed the result is sent straight back to the agent that
initially received the task. This task is usually achieved by messages and will be
detailed in Section 7.5.2.

It can be noticed that no prior scheduling decisions are made, and that tasks
are scheduled one by one as they become ready for scheduling. This is necessary
due to the dynamism and unpredictability of the environment. In paper (Frincu,
Macariu, & Carstea, 2009) a unified scheduling model for independent and
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dependent tasks has been discussed. The goal was to allow SA for independent tasks
to be applied to workflows when dynamic environments and online scheduling were
considered.

Although this approach is suited when global scheduling decisions are needed
there are cases where the workflow engine cannot easily achieve task-to-resource
mappings (Active BPEL, 2010) during runtime. Instead workflow SAs such as
HEFT (Sakellariou & Zhao, 2003), Hybrid (Sakellariou & Zhao, 2004) or CPA
(Radulescu & van Gemund, 2001) could be used. However they only consider the
tasks in the current workflow when scheduling or rescheduling decisions are needed.
These algorithms provide strategies to schedule workflow tasks on heterogeneous
resources based on the analysis of the entire task graph. Every time a workflow
is submitted tasks would first be assigned to resources and only then would the
workflow execution begin. The negotiation for resources thus takes place prior to
runtime. This static approach however is not suited for highly dynamic environments
(for example clouds) where: resource availability cannot be predicted; reservations
are difficult to achieve; a global perspective needs to be obtained; and deadline
constraints require permanent rescheduling negotiations.

In what follows we present an agent-based solution for scheduling workflows.
So called scheduling agents are used to negotiate, to schedule tasks and to send
the answer back to the workflow engine. Its aim is to provide a platform for online
workflow scheduling where tasks get scheduled only when they become ready for
execution. This means that a task whose predecessors have not completed their
execution is not considered to be submitted for execution.

7.5 Distributed Agent Based Scheduling Platform Inside Clouds

As clouds are unpredictable in what concerns resource and network load, systems
need to be able to adapt to the new execution configurations so that the cost over-
heads are not greatly exceeded. Multi-Agent Systems (MAS) provide an answer
for this problem as they rely on (semi)decentralized environments made up of
several specialized agents working together towards achieving a goal through nego-
tiation. While negotiating each agent keeps a self-centered point of view by trying
to minimize its costs.

Although a good option when highly dynamic DS are involved, distributed
approaches involve a great amount of transfer overhead (Weichhart, Affenzeller,
Reitbauer, & Wagner, 2004) as they require permanent updated from their peers in
order to maintain an up to date global view. Contrary, centralized approaches do not
require a lot of communication but their efficiency peak is maximized mostly when
dealing with DS that maintain a relatively stable configuration.

Decentralized agent based solutions for task scheduling also arise as suited
solutions when considering a federation of multiple VOs each having its own
resources and implementing its own scheduling policies. Submitting tasks in such
an environment requires inter-VO cooperation in order to execute them under
restrictions including execution deadlines, workloads, 10 dependencies etc.
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A computing agent can be defined by flexibility, agility and autonomy and as
depicted in (Foster, Jennings, & Kesselman, 2004) can act as the brain for task
scheduling inside the multi-cloud infrastructure. Agents allow resources to act as
autonomous entities which take decisions on their own based on internal logic.
Furthermore an intelligent agent (Sauer et al., 2000) can be seen as an extension
to the previously given definition by adding three more characteristics: reactivity
(agents react to the environment), pro-activeness (agents take initiatives driven by
goals) and social ability (interaction with other agents).

In order to take scheduling decisions agents must meet all the previous require-
ments. They need to quickly adapt to cloud changes and to communicate with others
in order to find a suitable service for tasks that need faster execution. In the con-
text of task scheduling agent adaptiveness includes handling changes in resource
workload or availability. In what follows we present a SOE oriented agent based
scheduling platform.

7.5.1 The Scheduling Platform

A distributed agent scheduling platform consists of several agents working together
for scheduling tasks. Inside a cloud consisting of several service providers (VOs),
agents have the role of negotiating and reaching an agreement between the peers.
Based on the meta-scheduling heuristics, the internal scheduler, the knowledge on
the services it governs and the tasks’ characteristics each agent will try to negotiate
the relocation from/towards it of several tasks. In trying to achieve this goal agents
will also attempt to minimize a global cost attached to each workflow.

Agent based approaches can allow each cloud provider to maintain its own inter-
nal scheduling policies (Frincu, 2009a). Furthermore they can also use their own
scheduling policies at meta-scheduling level. When deciding on task relocations
every agent will follow its own scheduling rules and will try to reach an agreement,
through negotiation, with the rest. These aspects allow VOs to maintain autonomy
and to continue functioning as independents unit inside the cloud. Autonomy is a
mandatory requirement as VOs usually represent companies that want to maintain
their independence while providing services to the general public.

Every VO willing to expose services will list one or more agents to a Yellow
Pages online directory which can be queried by other agents wanting to negotiate
for a better resource.

Agents can be designed as modular entities. In this way we can add new func-
tionalities to agents without requiring creating new agent types. This is different
from previous works (Cao, Spooner, Jarvis, & Nudd, 2005; Sauer et al., 2000) which
mostly dealt with hierarchies of agents. By doing this we create a super-agent which
tries to ensure that the tasks in its domain get the best resources. In addition the need
of having multiple agents working together for handling the same task is eliminated.
Examples of such agents include: the execution agent, the scheduling agent, the
transfer agent, the interface agent, etc.
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In our vision all the previously listed specialized agents become sub-modules
inside every agent. Thus each agent will have: a scheduling module, a communi-
cation module, a service discovery module and an execution module. The sum of
all agents forms the meta-scheduler, which is responsible for the inter-service task
allocation. Figure 7.4 details this modular structure together with the interactions
between agents and other cloud components.
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Fig. 7.4 Agent based scheduling platform
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In what follows we divide the agents in two categories depending on whether
they initiate the request i.e. requestor agents, or they respond to an inquiry i.e. solver
agents. This division does not influence the characteristics of the agent and is only
intended to depict its role.

The communication module handles any type of message exchange with other
agents. It also facilitates the dialogue between modules such as between the schedul-
ing module and the service discovery module, or between the scheduling module
and the executor module.

The service discovery module allows each agent to discover services published
on UDDI’s located inside its own domain. Typically every resource or provider
inside a VO willing to offer some functionality to the general public publishes it
as services inside an UDDI. Once a service has been published it can be used by
the scheduling agent when reallocating tasks. This module is not used to discover
services outside the agent’s domain. The reason for this behavior is simple: every
service outside its domain is not controlled by the agent and thus not trusted. Trust
on services is achieved through negotiation with other agents.

The execution module is responsible for invoking the service selected for task
execution. Service invocation is usually achieved by creating a client tailored to fit
the service interface. The creation has to be done dynamically during runtime as
it is not feasible to maintain a list of precompiled clients on disc due to the num-
ber and diversity of the existing services. Paper (Carstea, Frincu, Macariu, Petcu,
& Hammond, 2007) presents an API for accessing both SOAP-based services and
Grid Services by dynamically creating clients based on the service WSDL (Web
Service Description Language) (WSDL, 2010). It should be noted that the execu-
tion module is not responsible for creating any VM required by tasks. It is up to
the resources behind the service to initialize any required VMs based on the task
description.

The scheduling module deals with task-to-service or task-to-agent allocations.
This module is the heart of the agent based scheduling platform and relies on
scheduling heuristics for taking its decisions. Every agent has one or more tasks
assigned to it. Depending on the scheduling heuristics it can choose to execute some
of the tasks on services governed by agents outside its domain. In the same way it
can decide to accept new tasks from other agents.

Depending on the policies implemented by the VO there are two possible sce-
narios that the scheduling module can face. The first occurs when the agent has no
information on the resources running the applications and all it sees are the inter-
faces of the services. The second is the case when an agent knows all there is to know
about the underlying resources i.e. workflow, characteristics, network topology, etc.
Both of these scenarios are important depending on how the agent behaves when a
task needs to executed on one of its services.

The requestor agent submits the job either directly to the service or to the solver
agent. In what concerns the rest of this paper we deal with the latter case. The
former option involves bypassing the VO scheduler represented by the agent. This
happens because the task will be handled directly by the internal resource scheduler.
As a consequence any further scheduling optimization at the meta-scheduling level
would be hindered.
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The scheduling module inside an agent implements a scheduling heuristics
designed to deal with SOE. The scheduling heuristics can be seen as the strat-
egy used by the agent to select a resource for its tasks, while the interaction with
other agents represents the negotiation phase. The negotiation proceeds based on
rules embedded inside the strategy. A common bargaining language and a set of
predefined participation rules are used to ensure a successful negotiation.

Each agent has several services it governs (see Fig. 7.5). Attached to them there
are task queues. Depending on the scheduling heuristics only a given number of
tasks can be submitted (by using the execution module) to a service at any given
moment. Once submitted to the service it is the job of the internal scheduler to assign

Negotiate with other aganls*

cloud ¥
Scheduling Agent
= \ \
Schedule tasks
A/

Submit task and
query status

ananb aJmesg
ananb asneg
ananb aowag

s

-
Invoke service
e

_In
0

00
-
00

VO

T L
Send tasks to
internal scheduler

Internal
Resource
Scheduler Send task status

’\\ and result
f‘ichedule tasks
¥ M T

Z & & &
g & 8 &
2| 8ee
2 |2 |3 |2
@ © ]
"-.-‘\“_
N‘E&;‘;‘eﬁl‘;@ks
On resorce =

Resource exposed by the
service

Fig. 7.5 Task scheduling inside the agent’s domain



174 M.E. Frincu

the tasks to the resources. Similarly to the service level queues there could also
exist queues attached to physical resources. Reallocation between these queues is
accomplished by the internal scheduler and is independent on any meta-scheduling
decisions taken by agents. Each resource behind a service can implement its own
scheduling policies. Usually tasks submitted to a service are not sent back to the
agent for meta-scheduling. There are many ways of checking whether a task has
been completed or not. One of them requires the scheduling agent to periodically
query the service to which it has submitted it for the result. In Section 7.5.3 we
briefly present a prototype where internal schedulers have their own scheduling
heuristics and work independently from the agent meta-scheduling heuristics.

7.5.2 Scheduling Through Negotiation

The central entity of every agent based scheduling platform is the scheduling mech-
anism. Based on its rules agents make active/passive decisions on whether to move
or to accept new tasks. Every decision is proceeded by a negotiation phase where
the agent requests/receives information from other agents and decides, based on the
scheduling heuristics, which offer to accept. Negotiation requires both a language
and a set of participation rules (Ramchurn, 2004). Depending on the VO policy and
on the adherence of other VOs to it many types of negotiation can be used. Examples
include game theory models (Rosenschein & Zlotkin, 1994), heuristic approaches
(Faratin, Sierra, & Jennings, 2001) and argument based (Parsons, Sierra, &
Jennings, 1998) solutions.

A minimal set of locutions has been devised for the communication language
used by our platform:

o requestOffer(ij,k): agent i requires an offer from agent j for a task k. Task
k contains all the information required to make a scheduling decision. This
may include (if available): estimated execution times, estimated transfer costs,
execution deadlines, required input, etc.;

o sendOffer(j,i,k,p): agent j sends an offer of price p to agent i for the execution of
task k. The price p represents the cost to execute task k on resource j. Measuring
costs depends on the scheduling heuristics. For example it could represent the
estimated time required for executing the task on a service belonging to agent j;

e acceptOffer(i,j,k): agent i accepts the offer of agent j for executing task k;

o sendlask(i,jk): agent i sends for execution task k to a service provided by
agent j;

e rejectOffer(i,j,k): agent i rejects the offer of agent j for executing task k;

o requestTasks(i,j): agent i informs agent j that it is willing to execute more tasks;

e requireDetails(i,j): agent i informs agent j that it requires more details on the
services/resources under the latter’s management. More specifically they refer to
details (WSDL URL for example) on the service proposed by agent j;
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e sendDetails(j,i,d): agent j sends available details to agent i. These details contain
only publicly available data as result of internal policies;

o informTaskStatus(i,j,k,m): agent i informs by using message m agent j about the
status of a task k. For example the message could contain the result of a task
execution.

Participation rules are required in order to prohibit agents from saying something
they are not allowed to say at a particular moment. Figure 7.6 shows participation
rules between these locutions in the form of a finite state machine:

A negotiation starts either from a request for more tasks from an agent j or from
a request for offers for a given task which an agent i decided to relocate. There
is a permanent link between the workflow engine agent and the scheduling agent
responsible for the VO in which the engine executes. It is to this agent where tasks
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are placed first. Once a new task has been sent to this agent it is its responsibil-
ity to find and negotiate the execution on a resource which has the highest chance
of minimizing the deadline constraint. Workflow engines agents are similar with
scheduling agents and can communicate with them. However they cannot schedule
tasks on resources. Their only purpose is to provide an interface between the engine
and the meta-scheduling platform.

When scheduling workflows an important problem that needs to be integrated
inside the negotiation phase occurs. Considering the execution of a task on a service
that provides a result which can only be further used on services belonging to the
same VO, any other possible solutions outside of that VO would be ignored. It is
therefore the job of the requestor agent to negotiate for a solution that maximizes the
search set. For that reason a balance between the best time cost at a given moment
and future restrictions needs to be achieved. As an example, selecting the fastest
service for executing the task could be transformed into selecting the service which
executes the task faster and without restrictions on using the result.

In case an agent j has requested more tasks from another agent i the latter will
ask the former for offers regarding the cost of executing some of its tasks. At this
point agent j will send back to agent i an offer for the task in question.

Based on this offer agent i will ask for more details regarding the available ser-
vices which will allow it to make a proper decision: it will either reject or accept
the offer. In case agent i accepts the offer of agent j the task will be submitted to a
service queue governed by the latter agent (see Fig. 7.5). In return it will send back
a message on the task status. Once the task is completed the result will be sent back
to the workflow agent which will communicate it to the engine. The engine will use
the result to select consequent tasks for scheduling and execution.

In the frame of the presented negotiation protocol the key element is played by
the moment a request for a relocation offer or for new tasks is made. This point in
time basically marks the starting of the negotiation.

The problem of properly selecting the moment of an offer request has been
addressed in our paper (Frincu, 2009a). The proposed scheduling heuristics incorpo-
rates this reallocation moment and it is shown that the schedule outcome is directly
influenced by it.

In order to extend this approach to SOE, a deadline-based approach has been
investigated in paper (Frincu, 2009b). The study is based on the fact that in SOE
users usually want to minimize their costs with regard to usage time and thus provide
an execution deadline for each task inside their workflows. The aim of the schedule
is to minimize the global task lateness i.e. the difference between the actual task
finish time and the user given deadline time.

The scheduling heuristics is called DMECT (Frincu, 2009a) (Dynamic
Minimization of Estimated Completion Time). It periodically computes, for every
task, the Time Until Deadline (TUD), the Local Waiting Time (LWT) — the time
since it was assigned to the current service queue — and the Total Waiting Time
(TWT) — time since the task’s submission. From these values a decision on whether
to move the task or not is taken by checking if the TUD/TWT — LWT is smaller
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than O or not. If the value is smaller a requestOffer action is taken. It must be
noted that when the decission to relocate the task is taken, all the available ser-
vices are taken into consideration. These include both internal (part of the current
agent domain) and external (obtained from the requestOffer inquiry) ones. In this
way every existing service gets a fair chance for competing for tasks. It can be eas-
ily seen that the relocation relation will try to relocate tasks faster as their deadline
approaches.

As a response to a requestOffer inquiry, every agent will perform a sendOffer
action which will inform the requestor agent on possible choices. Every reply typi-
cally contains a cost for the task’s execution on its best service. If the initial inquiry
also contained a lower bound for that cost a list of services offering better prices
is returned. The cost for scheduling is made up of execution times possible com-
bined with monetary costs. For example when inquired, each agent will compute
the estimated execution time on every service and return only those which have val-
ues smaller than the initially provided limit. Alternatively it could return only the
smallest value, ensuring that the best available offer it had was made.

In case where it is impossible to estimate the execution time due to insufficient
data or internal policies the length of a service queue could be used as measure.
In (Frincu, 2009b) we have shown that the smaller a queue is the likelihood that it
executes tasks faster is.

After gathering all the costs the requestor agent will select the best one according
to the scheduling heuristics i.e. smallest execution time in our example. All other
offers will be rejected. Once selected the task will be sent to the selected solver
agent which will place the task in the service queue and the LWT value for the
relocated task will be set to 0. In the scenario that the task will not get executed
on the newly elected service as well, i.e. TUD/TWT — LWT < 0, the solver agent
will send a requestOffer inquiry to other agents, thus becoming the newly requestor
agent for that task.

Deciding when to request for new tasks is another important case which triggers
the negotiation process. In this case an agent sends a requestTasks message to all the
other agents informing them about its willingness to accept tasks. Once this message
has been sent agents will begin sending requestOffers to it for tasks they wish to
reallocate. From this point the negotiation proceeds similarly with the previously
discussed case.

Depending on the policy the request for new tasks can be done periodically or
when the load of the services under an agent’s supervision drops below a certain
limit. Depending on the scheduling policy this approach of actively searching new
tasks could be inefficient. For example in our scenario using the DMECT heuristics
such a request would have no effect until at least one task exceeds its staying limit
on a resource queue. Other scheduling heuristics based on simple load balancing
techniques such as the one presented in Frincu et al., (2009) could be more suited for
this scenario. In these cases there are no conditions preventing tasks from migrating
between agents. Once an agent decides that the load on its services has dropped
sufficiently new tasks can be requested.
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7.5.3 Prototype Implementation Details

In this section we present some implementation aspects of the scheduling platform
prototype. The platform relies on JADE (Bellifemine, Poggi, & Rimassa, 2001) as
an agent platform and on the OSyRIS (OSYRIS WorkFlow Engine, 2010) engine
for workflow enactment.

JADE facilitates the development of distributed applications following the agent-
oriented paradigm and is in fact a FIPA (Foundation for Intelligent Physical Agents)
compliant multi-agent middleware. It is implemented in the Java language and
provides an Eclipse plug-in which eases the development process by integrating
development, deployment and debugging graphical tools. In addition JADE can be
distributed across several resources and its configuration can be controlled through
a remote graphical user interface. Agents can migrate among these resources freely
at any time. Also JADE provides: a standard architecture for scheduling agent
activities; a standard communication protocol by using the Agent Communication
Language (ACL); and allows the integration of higher functionality by allowing
users to include their own Prolog modules for activity reasoning. Even though
the simple model of JADE agents makes the development easier it requires a
considerable amount of effort for including intelligence when complex control is
required.

Paper (Poggi, Tomaiuolo, & Turci, 2004) presents an extension to JADE where
the platform is augmented with two types of agents with the aim of paving the way
for a more flexible agent cloud system. The two types of agents are: the BeanShell
agent responsible for sending and executing behaviors coming from other agents;
and the Drools agent responsible for receiving and executing rules coming from
other agents. Authentication and authorization mechanisms are offered for both
types of agents.

OSyRIS is a workflow enactment engine inspired by nature where rules are
expressed following the Event Condition Action paradigm: tasks are executed only
when some events occur and additional optional conditions are met. In OSyRIS
events represent the completion of tasks and conditions are usually placed on the
output values. A single instruction is used all the rest (split, join, parallel, sequence,
choice, loop) deriving from it: LHS -< RHS | condition, salience, where LHS (Left
Hand Side) represents the tasks that need to be completed before executing the RHS
(Right Hand Side) tasks. The engine relies on a chemical metaphor where tasks play
the role of molecules and the execution rules are the reactions.

In order to simulate VOs we have used two clusters available at the university.
One consisting of 8 Pentium dual-core nodes with 4 GB of RAM each (called VO1)
and the other having 42 nodes with 8 cores and 8 GB of RAM each. The latter cluster
is divided into 3 blades (called VO2, VO2 and VO3) each with 14 nodes each.
To each blade there is attached one scheduling agent which manages the services
running on them. A single agent is used for governing the entire VO1. Nodes are
paired and each pair is exposed through a service handled by the agent handling the
governing VO. The agents are registered to a yellow page repository as depicted in
Fig. 7.4. For inter-agent task scheduling the DMECT heuristics is used. Although
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different SAs could be used for local resource scheduling we have opted for a single
one: the MinQL (Frincu et al., 2009) heuristics.

The scheduling scenario proceeds as follows: once a scheduling agent receives a
task, it attaches it to one of its service queues (see Fig. 7.5). Tasks are received either
by negotiating with other agents or directly from a workflow agent. The negotiation
protocol is similar with the one in Fig. 7.6 and uses the DMECT SA'’s relocation
condition (Frincu, 2009a) as described in Section 7.5.2. Each service can execute
at most £ instances simultaneously. Variable k is equal to the number of processors
inside the node pair. Once sent to a service a task cannot be sent back to the agent
unless explicitly specified in the scheduling heuristics. Tasks sent to services are
scheduled inside the resource by using the MinQL SA which uses a simple load
balancing technique. Scheduling agents periodically query the service for completed
tasks. Once one is found the information inside it is used to return the result to
the agent responsible for the workflow instance. This passes the information to the
engine which in turn passes the consequent set of tasks to the agent for scheduling.

In order to simulate the cloud heterogeneity in terms of capabilities services
offer different functionalities. In our case services offer access to both CASs and
image processing methods. As each CAS offers different functions for handling
mathematical problems so does the service exposing it. The same applies for the
image processing services that do not implement all the available methods on every
service. An insight on how CASs with different capabilities can be exposed as
services is given in (Petcu, Carstea, Macariu, & Frincu, 2008).

7.6 Conclusions

In this paper we have presented some issues regarding task scheduling when services
from various providers are offered. Problems such as estimating runtimes and trans-
fer costs; service discovery and selection; trust and negotiation between providers
for accessing their services; or making the independent resource scheduler cooper-
ate with the meta-scheduler, have been discussed. As described much of the existing
scheduling platforms are grid oriented and cloud schedulers are only beginning to
emerge. As a consequence a MAS approach to the cloud scheduling problem has
been introduced. MAS have been chosen since they provide greater flexibility and
are distributed by nature. They could also represent a good choice for scheduling
scenarios where negotiation between vendors is required. Negotiation is particularly
important when dealing with workflows where tasks need to be orchestrated together
and executed under strict deadlines in order to minimize user costs. This is due to
the fact that vendors have different access and scheduling policies and therefore
selecting the best service for executing a task with a provided input becomes more
than just a simple reallocation problem. The prototype system uses a single type
of agents which combine multiple functionalities. The resulting meta-scheduler
maintains the autonomy of each VO inside the cloud.

The presented solution is under current development and future tests using
various SAs and platform configurations are planned.
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Chapter 8
The Role of Grid Computing Technologies
in Cloud Computing

David Villegas, Ivan Rodero, Liana Fong, Norman Bobroff, Yanbin Liu,
Manish Parashar, and S. Masoud Sadjadi

Abstract The fields of Grid, Utility and Cloud Computing have a set of com-
mon objectives in harnessing shared resources to optimally meet a great variety
of demands cost-effectively and in a timely manner Since Grid Computing started
its technological journey about a decade earlier than Cloud Computing, the Cloud
can benefit from the technologies and experience of the Grid in building an infras-
tructure for distributed computing. Our comparison of Grid and Cloud starts with
their basic characteristics and interaction models with clients, resource consumers
and providers. Then the similarities and differences in architectural layers and key
usage patterns are examined. This is followed by an in depth look at the technologies
and best practices that have applicability from Grid to Cloud computing, including
scheduling, service orientation, security, data management, monitoring, interoper-
ability, simulation and autonomic support. Finally, we offer insights on how these
techniques will help solve the current challenges faced by Cloud computing.

8.1 Introduction

Cloud computing exploits the advances in computing hardware and programming
models that can be brought together to provide utility solutions to large-scale com-
puting problems. At the hardware level, the last half century has seen prolific
progress in computing power. This results from many improvements at the processor
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level, and in recent years the availability of low cost multi-core circuits. Additional
progress in high speed, low latency interconnects, has allowed building large-scale
local clusters for distributed computing, and the extension to wide-area collabo-
rating clusters in the Grid. Now, the recent availability of hardware support for
platform virtualization on commodity machines provides a key enabler for Cloud
based computing.

Software models move in lockstep to match advances in hardware. There is a con-
siderable practical experience implementing distributed computing solutions and in
supporting parallel programming models on clusters. These models now work to
leverage the concurrency provided by multi-core and multi-systems. Additionally,
there are two other areas of software evolution that are moving quickly to support
the Cloud paradigm: one is the improving maturity and capability of software to
manage virtual machines, and the other is the migration from a monolithic approach
in constructing software solutions to a service approach in which complex processes
are composed of loosely coupled components.

These latest steps in the evolution of hardware and software models have led
to Grid and Cloud Computing as paradigms that reduce the cost of software
solutions. Harnessing shared computing resources from federated organizations to
execute applications is the key concept of Grid Computing, as proposed by Foster,
Kesselman, and Tuecke (2001): “Grid concept is coordinated resource sharing and
problem solving in dynamic, multi-institutional virtual organizations...The sharing
is, necessarily, highly controlled, with resource providers and consumers defining
clearly and carefully just what is shared, who is allowed to share, and the conditions
under which sharing occurs.”

Evolving from the technologies of Grid computing, Utility Computing is “a
business model in which computing resources are packaged as metered services”
(Foster, Zhao, Raicu, & Lu, 2008) to meet on demand resource requirements. The
metered resource usage is similar to electric and water utility in delivery and the pay-
ment model is pay-as-you-go. The Utility Computing projects also introduced and
demonstrated the ideas of dynamic provisioning of computing resources (Appleby
etal., 2001).

Armbrust et al. (2009) defined Cloud Computing as providing application
software delivered as services over the Internet, and the software and hardware
infrastructure in the data centers that provide those services using business models
that are similar to Utility Computing. Metering of services to support pay-as-you-go
business models is suitable to application software (i.e., software as services, SaaS),
platform (i.e., platform as services, PaaS), and infrastructure (i.e., infrastructure as
services, [aaS). Moreover, Cloud Computing leverages emerging technologies such
as the Web 2.0 for application services, and virtualization and dynamic provision-
ing support for platform services (Buyya, Yeo, Srikumar Venugopal, & Brandic,
2009).

Grid Computing, Utility Computing and Cloud Computing differ in aspects as
their architectures, the types of coordinated institutions, the types of resources
shared, the cost/business models, and the technologies used to achieve their objec-
tives. However, all these computing environments have the common objectives in
harnessing shared resources to optimally meet a variety of demands cost-effectively
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and at timely manner. Since Grid Computing started its technological journey
about a decade earlier than Cloud Computing, are there lessons to learn and
technologies to leverage from Grid to Cloud? In this chapter, we would like to
explore the experiences learnt in Grid and the role of Grid technologies for Cloud
computing.

The rest of this chapter is organized as follows:

e Introductory discussion on the basics of Grid and Cloud computing, and their
respective interaction models between client, resource consumer and provider
(Section 8.2)

e Comparison of key processes in Grid and Cloud computing (Section 8.3)

e Core Grid technologies and their applicability to Cloud computing (Section 8.4)

e Concluding remarks on the future directions of Grid and Cloud computing
(Section 8.5).

8.2 Basics of Grid and Cloud Computing

8.2.1 Basics of Grid Computing

Grid Computing harnesses distributed resources from various institutions (resource
providers), to meet the demands of clients consuming them. Resources from differ-
ent providers are likely to be diverse and heterogeneous in their functions (comput-
ing, storage, software, etc.), hardware architectures (Intel x86, IBM PowerPC, etc.),
and usage policies set by owning institutions. Developed under the umbrella of Grid
Computing, information services, name services, and resource brokering services
are important technologies responsible for the aggregation of resource information
and availability, selection of resources to meet the clients’ specific requirements and
the quality of services criteria while adhering to the resource usage policies.

Figure 8.1 shows an exemplary relationship of resource providers and con-
sumers for a collaborative Grid computing scenario. Clients or users submit their
requests for application execution along with resource requirements from their home
domains. A Resource broker selects a domain with appropriate resources to acquire
from and to execute the application or route the application to domain for execution
with results and status returning to the home domain.

8.2.2 Basics of Cloud Computing

IDC! defined two specific aspects of Clouds: Cloud Services and Cloud Computing.
Cloud Services are “consumer and business products, services and solutions that are
delivered and consumed in real-time over the Internet” while Cloud Computing is
“an emerging IT development, deployment and delivery model, enabling real-time

1http://blogs.idc.com/ie/ 7p=190
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delivery of products, services and solutions over the Internet (i.e., enabling Cloud
services)”. In this chapter, we will focus the computing infrastructure and platform
aspects of the Cloud.

Amazon’s Elastic Compute Cloud? popularized the Cloud computing model
by providing an on-demand provisioning of virtualized computational resources
as metered services to clients or users. While not restricted, most of the clients
are individual users that acquire necessary resources for their own usage through
EC2’s APIs without cross organization agreements or contracts. Figure 8.2 illus-
trates possible usage models from clients C1 and C2 for resources/services of Cloud
providers. As Cloud models evolve, many are developing the hybrid Cloud model
in which enterprise resource brokers may acquire additional needed resources from
external Cloud providers to meet the demands of submitted enterprise workloads
(E1) and client work requests (E2). Moreover, the enterprise resource domain and
Cloud providers may all belong to one corporation and thus form a private Cloud
model.

8.2.3 Interaction Models of Grid and Cloud Computing

One of the most scalable interaction models of Grid domains is peer-to-peer,
where most of the Grid participating organizations are both consumers and
providers. In practice, there are usually agreements of resource sharing among the

thtp://www.amazon.com/ecZ
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peers. Furthermore, clients of consumer organizations in Grids use heterogeneous
resources from more than one resource provider belonging to the same Virtual
Organization (VO) to execute their applications. It is important for participating
resource providers and consumers to have common information models, interaction
protocols, application execution states, etc. The organization of Open Grid Forum
(OGF)?3 has the goal of establishing relevant and necessary standards for Grid com-
puting. Some proposed standards include Job Submission Description Language
(JSDL), Basic Execution Service (BES) and others.

Currently, most of the Cloud providers offer their own proprietary service pro-
tocols and information formats. As Cloud computing becomes mature and widely
adopted, clients and consumer organizations would likely interact with more than
one provider for various reasons, including finding the most cost effective solutions
or acquiring a variety of services from different providers (e.g., compute providers
or data providers). Cloud consumers will likely demand common protocols and
standardized information formats for ease of federated usage and interoperabil-
ity. The Open Virtualization format (OVF) of the Distributed Management Task
Force (DMTF)* is an exemplary proposal in this direction. Modeled after similar
formations in the Grid community, OGF officially launched a workgroup, named

3 http://www.ogf.org/
“http://www.dmtf.org/standards/
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the Open Cloud Computing Interface Working Group (OCCI-WG)® to develop the
necessary common APIs for the lifecycle management of Cloud infrastructure ser-
vices. More standardization activities related to Cloud can be found in the wiki of
Cloud-Standards.org.°

8.2.4 Distributed Computing in the Grid and Cloud

The Grid encompasses two areas of distributed system activity. One is operational
with an objective of administrating and managing an interoperable collection of
distributed compute resource clusters on which to execute client jobs, typically sci-
entific/HPC applications. The procedures and protocols required to support clients
from complex services built on distributed components that handle job submission,
security, machine provisioning, and data staging. The Cloud has similar operational
requirements for supporting complex services to provide clients with services on
different levels of support such application, platform and infrastructure. The Grid
also represents as a coherent entity a collection of compute resources that may
be under different administrative domains, such as universities, but inter-operate
transparently to form virtual organizations. Although interoperability is not a near
term priority, there is a precedent for commercial Clouds to move in this direc-
tion similarly to how utilities such as power or communication contract with their
competitors to provide overflow capacity.

The second aspect of distributed computing in the Grid is that job themselves are
distributed, typically running on tightly coupled nodes within a cluster and leverag-
ing middleware services such as MPICH. Jobs running in the Grid are not typically
interactive, and some may be part of more complex services such as e-science work-
flows. Workloads in Clouds usually consist of more loosely coupled distributed jobs
such as map/reduce, and HPC jobs written to minimize internode communication
and leverage concurrency provided by large multi-core nodes. Service instances that
form components of a larger business process workflow are likely to be deployed
in the Cloud. These workload aspects of jobs running in the Cloud or Grid have
implications for structuring the services that administer and manage the quality of
their execution.

8.3 Layered Models and Usage patterns in Grid and Cloud

There are many similarities in Grid and Cloud computing systems. We compare
the approaches by differentiating three layers of abstraction in Grid: Infrastructure,
Platform and Application. Then we map these three layers to the Cloud services
of TaaS, PaaS, and SaaS. An example of the relations among layers can be seen in
Fig. 8.3.

5 http://www.occi-wg.org/doku.php?id=start
6http://cloud—standards.org/
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This is the layer in which Clouds share most characteristics with the original pur-

pose of Grid middleware. Some examples are Eucalyptus (Nurmi et al.,
or Amazon EC2. In these systems users can provision execution

OpenN ebula,’

2009),

environments in the form of virtual machines through interfaces such as APIs or
command line tools. The act of defining an execution environment and sending a
request to the final resource has many similarities with scheduling a job in the Grid.
The main steps, shared by all of the cited Cloud environments are discussed below.
We use Globus as the reference Grid technology.

The user needs to be authorized to use the system. In Grid systems this is man-
aged through the Community Authorization System (CAS) or by contacting a
Certificate Authority that is trusted by the target institution, which issues a valid
certificate. Clouds usually offer web forms to allow the registration of new users,
and have additional web applications to maintain databases of customers and
generate credentials, such as the case of Eucalyptus or Amazon.

Once the user has a means of authenticating he needs to contact a gateway that
can validate him and process his request. Different mechanisms are employed
to carry users’ requests, but Web Services are the most common of them. Users
either write a custom program that consumes the WS offered by providers, or use
available tools. Examples include the Amazon API tools for Amazon EC2, the
euca2ools for Eucalyptus or the OpenNebula command line interface. Similarly,

7http://www.opennebula.org
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Globus offers a set of console-based scripts that facilitate communication with
the Grid.

e As part of the request for resource usage, users need to specify the action or task
to be executed on the destination resources. Several formats are available for this
purpose. Globus supports a Resource Specification Language (RSL) and a Job
Submission Description Language (JSDL) that can define what process is to be
run on the target machine, as well as additional constraints that can be used by a
matchmaking component to restrict the class of resources to be considered, based
on machine architecture, processor speed, amount of memory, etc. Alternatively,
Clouds require different attributes such as the size of the execution environment
or the virtual machine image to be used.

e After the job execution or the environment creation requests are received, there
is a match-making and scheduling phase involved. The GRAM component from
Globus is specially flexible in this regard, and multiple adapters allow different
treatments for jobs: for example, the simplest job manager just performs a fork
call to spawn a new process on the target machine. More advanced and widely
used adapters transfer job execution responsibility to a local resource manager
such as Condor, LoadLeveler or Sun Grid Engine. These systems are able of
multiplexing jobs that are sent to a site into multiple resources. Cloud systems
have simpler job management strategies, since the type of jobs are homogeneous
and don’t need to be adapted to a variety of resources such as in the case of
the Grid. For example, Eucalyptus uses a Round Robin scheduling technique to
alternate among machines. OpenNebula implements a Rank Scheduling Policy
to choose the most adequate resource for a request, and supports more advance
features such as advance reservations through Haizea (Sotomayor, Keahey, &
Foster, 2008).

e One of the common phases involved in job submission is transferring the nec-
essary data to and from the execution machine. The first of them, usually called
stage-in, involves retrieving the input data for the process from a remote destina-
tion, such a GridFTP server. When the amount of data is large, a mapping service
such as a Replica Location Service (RLS) can be used to translate a logical file
name to a location. The second part of the process, stage-out, consists in either
transferring the output data to the user’s machine or to place it in a repository,
possibly using the RLS. In the case of Cloud computing, the most important data
that has to be transferred is the definition of an execution environment, usually
in terms of Virtual Machine images. Users upload the data describing the oper-
ating system and packages needed to instantiate the VM and later reference it to
perform operations such as booting a new machine. There is no standard method
for transferring data in Cloud systems, but it is worth noting Amazon’s object
storage solution, the Simple Storage Service (S3), which allows users to move
entities from 1 byte to 5 GB in size.

e Finally, Grid and Cloud systems need to offer users a method to monitor
their jobs, as well as their resource usage. This facility can also be used by
site administrators to implement usage accounting in order to track resource
utilization and enforce user quotas. In the context of Globus, there are two
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modules that can be used for this purpose, the first is GRAM itself, which
allows user to query previously submitted jobs’ status. The second method of
acquiring information about the Grid’s resources is provided by the Monitoring
and Discovery Service (MDS), which is in charge of aggregating resources’
data and making it available to be queried. High-level monitoring tools have
been developed on top of existing Cloud management systems such as Amazon
CloudWatch.

8.3.2 Platform

This layer is built on top of the physical infrastructure and offers a higher level of
abstraction to users. The interface provided by a PaaS solution allows developers
to build additional services without being exposed to the underlying physical or
virtual resources. These facts enable additional features to be implemented as part
of the model, such as presenting seemingly infinite resources to the user or allowing
elastic behavior on demand. Examples of Cloud solutions that present these features
are Google App Engine,® Salesforce’s force.com® or Microsoft Azure.'?

Several solutions that can be compared to the mentioned PaaS offerings exist
in the Grid, even though this exact model cannot be exactly replicated. We define
Platform level solutions as those containing the following two aspects:

8.3.2.1 Abstraction from Physical Resources

The Infrastructure layer provides users with direct access to the underlying infras-
tructure. While this is required for the lower levels of resource interaction, in the
Platform level a user should be isolated from them. This allows developers to create
new software that is not susceptible to the number of provisioned machines or their
network configuration, for example.

8.3.2.2 Programming API to Support New Services

The Platform layer allows developers to build new software that takes advantage of
the available resources. The choice of API directly influences the programs that can
be built on the Cloud, therefore each PaaS solution is usually designed with a type
of application in mind.

With these characteristics Grid systems allow developers to produce new soft-
ware that take advantage of the shared resources in order to compare them with
PaaS solutions.

8http://code. google.com/appengine/
ghttp://www.force.com/
10http://www.microsoft.com/windowsazure/
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e Libraries are provided by Grid middleware to access resources programmati-
cally. The Globus Java Commodity Grid (CoG) Kit (Laszewski et al., 2001) is an
example. The CoG Kit allows developers to access the Grid functionality from
a higher level. However, resources have to be independently addressed, which
makes programs tied to the destination sites. Additionally, it is linked to Globus
and makes applications dependent on a specific middleware.

e SAGA (Goodale et al., 2006) and DRMAA!! are higher level standards that aim
to define a platform independent set of Grid operations. While the former offers a
wide range of options such as job submission, security handling or data manage-
ment, the later focuses on sending and monitoring jobs. These solutions provide
a higher level of abstraction than the previous example, but are still tied to the
Grid concept of jobs as programs that are submitted to remote resources.

e An example of an API that bypasses the underlying Grid model to offer pro-
grammers a different paradigm to develop new software is MPICH-G2 (Karonis,
Toonen, & Foster, 2003). It consists of a library that can be linked to a program
that uses the Message Passing Interface (MPI) to transparently enable the appli-
cation to work on the Grid. The programmer can think in familiar terms even
though applications are Grid enabled.

e GridSuperscalar (Badia et al., 2003) is a programming paradigm to enable appli-
cations to run on the Grid. Programmers identify the functions of their code
which can be run on remote resources, then specify the data dependencies for
each of those functions, and after writing the code a runtime module determines
the data dependencies and places each of the tasks in the Grid, transferring data
accordingly so that each task can be completed.

e Another programming paradigm aimed at building new functionality on top of the
Grid is SWIFT (Zhao et al., 2007). It provides a language to define computations
and data dependencies, and is specially designed to efficiently run very large
numbers of jobs while easing the task of defining the order of execution or the
placing of data produced from one job to be consumed by another.

Probably the main difference in Cloud PaaS paradigms compared to the
described options is that Grid models need to use the lowest common denominator
when implementing new services. The reason for this is that the degree of compat-
ibility with the middleware is directly related to the number of resources available:
if a user’s service does not make any assumptions on the remote resources, it will
be able to use all of them normally; on the other hand, services requiring addi-
tional software to be installed on the target machines would have considerably fewer
candidates to for execution.

In the case of Clouds, this requirement is not as stringent for two main reasons:
the first one is that PaaS solutions are deeply tied to Cloud vendors, and there-
fore they are designed in hand with the rest of the infrastructure, and the second is
that provisioning resources with the required libraries is much easier than in Grid
computing, allowing new nodes to be spawned with the required environment. In

Mhttp://www.drmaa.org/
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the case of Grids, having the required software installed in the execution resources
usually involves having a human operator do it, making the process more costly.

8.3.3 Applications

There is no clear distinctions between applications developed on Grids and those
that use Clouds to perform execution and storage. The choice of platform should not
influence the final result, since the computations delegated to the underlying systems
can take different shapes to accommodate to the available APIs and resources.

On the other hand, it is undeniable that the vast majority of Grid applica-
tions fall in the realm of scientific software, while software running in Clouds has
leaned towards commercial workloads. Here we try to identify some possible causes
for the different levels of adoption of these technologies for the development of
applications:

e Lack of business opportunities in Grids. Usually Grid middleware is installed
only in hardware intended for scientific usage. This phenomenon has not suc-
cessfully produced business opportunities that could be exploited by industry.
Conversely, Clouds are usually backed up by industry which have had better ways
to monetize their investments.

o Complexity of Grid tools. Perhaps due to the goal of providing a standardized,
one-size-fits-all solution, Grid middleware is perceived by many as complex and
difficult to install and manage. On the other hand, Cloud infrastructures have
usually been developed by providers to fit their organization’s needs and with a
concrete purpose in mind, making them easier to use and solution oriented.

o Affinity with target software. Most Grid software is developed with scien-
tific applications in mind, which is not true for the majority of Cloud systems.
Scientific programs need to get the most performance from execution resources
and many of them cannot be run on Clouds efficiently, for example because of
virtualization overhead. Clouds are more targeted to web applications. These dif-
ferent affinities to distinct paradigms make both solutions specially effective for
their target applications.

8.4 Techniques

Here we discuss the impact of techniques used in Grid computing that can be applied
in Clouds. From the time the concept of Grid was introduced, a variety of problems
had to be solved in order to enable its wide adoption. Some examples of these are
user interfacing (Section 8.4.1), data transfer (Section 8.4.2), resource monitoring
(Section 8.4.3) or security (Section 8.4.7). These basic techniques for the enable-
ment of Grids were designed to fulfill its main goals, namely, to allow the sharing
of heterogeneous resources among individuals belonging to remote administrative
domains. These goals determine the areas of application of the described techniques
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in Clouds, therefore we will find the most valuable set of improvements to be in the
field of Cloud interoperability.

Clouds can not only benefit from the most fundamental techniques in Grid com-
puting: additional techniques that arose on top of these building blocks to bring
new functionality to Grids are also good candidates to be applied to Clouds. Among
these we can find Autonomic Computing (Section 8.4.4), Grid scheduling (Section
8.4.5), interoperation (Section 8.4.6) or simulation (Section 8.4.8).

The techniques discussed in this section are therefore spread through various
levels of the Grid architecture: some of them can be found in the lower layers, giv-
ing common services to other components, and others are built from the former
and extend them. Following the classification discussed in Section 8.3, we find that
some techniques belong to the Infrastructure layer, this is, have the main objec-
tive of resource management, and others are spread through the Infrastructure and
Platform layers, such as the Metascheduling techniques described in the scheduling
section.

8.4.1 Service Orientation and Web Services

The Cloud is both a provider of services (e.g. [aaS, PaaS, and SaaS) and a place to
host services on behalf of clients. To implement the former operational aspects while
maintaining flexibility, Cloud administrative functions should be constructed from
software components. The Grid faced similar challenges in building a distributed
infrastructure to support and evolve its administrative functions such as security,
job submission, and creation of Virtual Organizations. The architectural principle
adopted by the Grid is Service Orientation (SO) with software components con-
nected by Web Services (WS). This section summarizes contributions of the Open
Grid Forum (OGF) to SO in distributed computing and and how they apply to the
Cloud. SO as an architecture, and Web Services as a mechanism of inter-component
communication are explored here in the context of similarities between Grid and
Cloud requirements.

Grid designers realized the advantage of the loosely-coupled client and service
model being appropriately deployed in the distributed computing environments. The
original Grid approach to SO was Open Grid Services Infrastructure (OGSI). OGSI
was built on top of the emerging Web Services standards for expressing interfaces
between components in a language neutral way based on XML schemas. While WS
is an interface, OGSI attempted to make it object oriented by adding required meth-
ods. Subsequently, the Grid community worked within the WS standards to extend
WS specification based on experience using a SOA. This lead to the introduction of
Open Grid Services Architecture (OGSA), implemented in version 3 of the Globus
toolkit. OGS A contains key extensions to the WS standard which are now described.

In Grid and Cloud the most typical service components such as provisioning
an OS image, starting a virtual machine, or dispatching a job are long running. A
service composition of these components requires an asynchronous programming
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model. A consumer service component invokes a WS provider and is immediately
acknowledged so the caller does not hold his process open on a communication
link. The provider component asynchronously updates the consumer as the state
changes. Grid architects recognized the importance of supporting the asynchronous
model and integrated this approach into Web Services through the WS-Addressing
and WS-Notify extensions. WS-Addressing specifies how to reference not just ser-
vice endpoints, but objects within the service endpoint. Notification is based on
WS-Addressing which specifies the component to be notified on a state change.

Related to the long lived service operation and asynchronous communication
model is the requirement to maintain and share state information. There are many
ways to achieve statefulness, none simple, especially when multiple services can
update the same state object. In principle, a WS interface is stateless although of
course there are many ways to build applications on top of WS that pass state
through the operation messages. The challenge is to integrate the WS specifica-
tion with a standard for statefulness that does not disturb the stateless intent of WS
interface model. The OGF achieved this goal, developing the Web Service Resource
Framework (WSRF). WSRF allows factory methods in the WS implementation
to create objects, which are referenced remotely using the WS-Addressing stan-
dard. Persistent resource properties are exposed to coupled services through XML.
Introducing state potentially adds enormous complexity to a distributed system, and
the distribution of stateful data to multiple service components has the potential
for data coherence problems which would require distributed locking mechanisms.
The approach introduced by the Grid passes WS endpoints to the resources so that
synchronized access is provided by the service implementation.

One path to leveraging Grid technology experiences in the Cloud is to consider
building operation support services with a SO. The component services intercon-
nect using the suite of WS standards. The logic of composing the services is built
with modern business process design tools which produce a workflow. The design
workflow is exported in the form such as the Business Process Execution Language
(BPEL) and executed by a workflow engine. This implementation path of using
BPEL with WSREF to build a SOA has been demonstrated in an e-Science context
(Ezenwoye & Sadjadi, 2010; Ezenwoye, Sadjadi, Carey, & Robinson, 2007).

There is already some experience using WS and WSRF in the Cloud domain.
The Nimbus project'? uses the WS and WSRF model as an interface for clients to
access its Cloud workspaces.

8.4.2 Data Management

In Grid computing, data-intensive applications such as the scientific software in
domains like high energy physics, bio-informatics, astronomy or earth sciences

1 2http://www.nimbusproj ect.org/
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involve large amounts of data, sometimes in the scale of PetaBytes (PB) and beyond
(Moore, Prince, & Ellisman, 1998).

Data management techniques to discover and access information are essential for
this kind of applications. Network bandwidth, transfer latency and storage resources
are as important as computational resources to determine the tasks’ latency and
performance. For example, a data-intensive application will preferably be run at a
site that has an ample and fast network channel to its dataset so that the network
overhead can be reduced, and if it generates a large amount of data, we would also
prefer a site that has enough storage space close to it.

Many technologies are applied in Grid computing to address data manage-
ment problems. Data Grids (Chervenak, Foster, Kesselman, Salisbury, & Tuecke,
2001) have emerged in scientific and commercial settings to specifically optimize
data management. For example, one of the services provided by Data Grids is
replica management (Chervenak et al., 2002; Lamehamedi, Szymanski, Shentu, &
Deelman, 2002; Samar & Stockinger, 2001; Stockinger et al., 2001). In order to
retrieve data efficiently and also avoid hot spots in a distributed environment, Data
Grids often keep replicas, which are either complete or partial copies of the origi-
nal datasets. Replica management services are responsible for creating, registering,
and managing replicas. Usually, a replica catalog such as Globus Replica Catalog
(Allcock et al., 2001) is created and managed to contain information of replicas that
can be located by users.

Besides data replication, caching is an effective method to reduce latency at
the data consumer side (Karlsson & Mahalingam, 2002). Other technologies such
as streaming, pre-staging, high-speed data movement, or optimal selection of data
sources and sinks are applied in Data Grids too. These data management technolo-
gies are also used in data sharing and distribution systems such as Content Delivery
Networks, Peer-to-Peer Networks and Distributed Databases. In Venugopal, Buyya,
and Ramamohanarao (2006), the author suggests a taxonomy of Data Grids and
compares Data Grids with other related research areas.

Standards for data services have been proposed in the Grid community. The
Open Grid Services Architecture (OGSA), which is adopted by the Global Grid
Forum (GGF), defines OGSA Data Services (Foster, Tuecke, & Unger, 2008) which
include data transfer, data access, storage resource management, data cache, data
replication, data federation, and metadata catalogues services. The Database Access
and Integration Services Working Group (DAIS-WG) (Antonioletti, Krause, &
Paton) at GGF is also developing standards of data services with an emphasis on
database management systems, which have a central role in data management such
as data storage, access, organization, authorization, etc. There are other groups at
GGF that work on data management in Grid computing such as Grid File System
Working Group, Grid Storage Management Working Group or GridFTP Working
Group. Among them, GridFTP Working Group works on improving the perfor-
mance of FTP and GripFTP (Allcock, 2003). GridFTP is an extension of FTP and it
supports parallel and striped data transfer and partial file transfer. FTP and GridFTP
are the most widely-used transport protocols when transferring bulk data for Grid
applications.
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The Globus Toolkit provides multiple data management solutions including
GridFTP, the Global Access to Secondary Storage(GASS), the Reliable File
Transfer (RFT), the Replica Location Service (RLS) and a higher-level Data
Replication Service (DRS) based on RFT and RLS. Specifically, GASS is a light-
weight data access mechanism for remote storage systems. It enables pre-staging
and post-staging of files and is integrated into the Globus Resource Access and
Monitoring (GRAM) to stage in executables and input data and if necessary, stage
out the output data and logs.

In the current state of Cloud computing, storage is usually close to computation
and therefore data management is simpler than in Grids, where the pool of execu-
tion and storage resources is considerably larger and therefore efficient and scalable
methods are required for placement of jobs and data location and transfer. Still, there
is the need to take data access into consideration to provide better application per-
formance. An example of this is Hadoop,'> which schedules computation close to
data to reduce transfer delays.

Same as Grid computing, Clouds need to provide scalable and efficient tech-
niques for transferring data. For example, we may need to move virtual machine
images, which are used to instantiate execution environments in Clouds, from
users to a repository and from the repository to hosting machines. Techniques for
improved transfer rates such as GridFTP would result in lower times for sites that
have high bandwidth, since they can optimize data transfer by parallelizing the
sending streams. Also, catalog services could be leveraged to improve distributed
information sharing among multiple participants such that the locating of user data
and data repositories is more efficient. The standards developed from Grid com-
puting practice can be leveraged to improve interoperability of multiple Clouds.
Finally, better integration of data management with the security infrastructure would
enable groups of trusted users. An application of this principle could be used in sys-
tems such as Amazon EC2 where VM images are shared by individuals with no
assurances about their provenance.

8.4.3 Monitoring

Although some Cloud monitoring tools have already been developed, they provide
high level information and, in most cases, the monitoring functionality is embedded
in the VM management system following specific mechanisms and models. The cur-
rent challenge for Cloud monitoring tools is providing information from the Clouds
and application/service requests with sufficient level of detail in nearly real time in
order to take effective decisions rather than providing a simple and graphical repre-
sentation of the Cloud status. To do this, different Grid monitoring technologies can
be applied to Clouds, specially those of them that are capable to provide monitor-
ing data in aggregate form due to the large scale and dynamic behavior of Clouds.

13 http://hadoop.apache.org/
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The experiences gained with the research of Grid monitoring standardization can
drive the definition of unified and standard monitoring interfaces and data models
to enhance interoperability among different Clouds.

Grid monitoring is a complex task, since the nature of the Grid means heteroge-
neous systems and resources. However, monitoring is essential in the Grid to allow
resource usage to be accounted for and to let users know whether and how their jobs
are running. This is also an important aspect for other tasks such as scheduling.

The OGF Performance Working Group developed a model for Grid monitoring
tools called Grid Monitoring Architecture (GMA) (Tierney et al., 2002). The archi-
tecture they propose is designed to address the characteristics of Grid platforms.
Performance information has a fixed, often short, lifetime of utility. Performance
data is often more frequently updated than requested, whereas usual database pro-
grams are firstly designed for queries. This means that permanent storage is not
always necessary, and that the tools must be able to answer quickly before the data
is obsolete. A Grid performance monitoring tool also needs to handle many different
types of resources and should be able to adapt when communication links or other
resources go down. Thus, monitoring systems should be distributed to suit these
requirements. In fact, a monitoring tool should find a good tradeoff between the
following characteristics: low latency for delivering data, high data rate, scalability,
security policies, and minimum intrusiveness.

The GMA is based on three types of components: producers, consumers and the
directory service (see Fig. 8.4). A producer is any component that can send events to
a consumer, using the producer interface (accepting subscription, queries and ability
to notify). In a monitoring tool, every sensor is encapsulated in a producer; however
a producer can be associated to many different sources: sensors, monitoring systems
or databases, for example. A consumer is any component that can receive event
data from a producer. The consumer interface contains subscription/unsubscription
routines and query mechanisms. To exchange data events, producers and consumers
have a direct connection, but to initiate the dialog, they need the directory service.

Several monitoring tools have been developed for Grid systems. Balaton et al.
(2004) provide a description and categorization of existing performance monitoring
and evaluation tools, and Serafeim et al. (Zanikolas & Sakellariou, 2005) propose a
taxonomy of Grid monitoring systems, which is employed to classify a wide range
of projects and frameworks. Some of these approaches are discussed below.

Consumer R%’Sfraﬁoq
i
. Directory
Monitored Data =
(events) Service
Fig. 8.4 Grid Monitoring Producer
Architecture components
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Ganglia (Massie, Chun, & Culler, 2004) is a scalable distributed monitoring
system for high-performance computing environments such as clusters and
Grids. It is based on a hierarchical design targeted at federations of clus-
ters, relies on a multicast-based listen/announce protocol to monitor state
within clusters and uses a trace of point-to-point connections amongst repre-
sentative cluster nodes to federate clusters and aggregate their state. Data is
represented in XML and compressed using XDR. The Ganglia Web Frontend
can be used to inspect for example CPU utilization in the last hour or last
month. Ganglia has been deployed in many HPC infrastructures including
supercomputing facilities and large Grid systems.

Network Weather Service (NWS) (Nolski, Spring, & Hayes, 1999) is a dis-
tributed system for producing short-term performance forecasts based on
historical performance measurements. NWS provides a set of system sen-
sors for periodically monitoring end-to-end TCP/IP performance (bandwidth
and latency), available CPU percentage, and available non-paged memory.
Based on collected data, NWS dynamically characterizes and forecasts the
performance of network and computational resources.

Mercury (Balaton & Gombas, 2003) was designed to satisfy requirements of
Grid performance monitoring: it provides monitoring data represented as
metric via both pull and push access semantics and also supports steering
by controls. It supports monitoring of Grid entities such as resources and
applications in a generic, extensible and scalable way. Its design follows the
recommendations of the OGF GMA described previously.

OCM-G (Balis et al., 2004) is an OMIS-compliant application monitor devel-
oped within the CrossGrid project. It provides configurable online monitor-
ing via a central manager which forwards information requests to the local
monitors. However, OCM-G has a distributed architecture.

The Globus Monitoring and Discovery System (MDS) (Czajkowski, Fitzgerald,
Foster, & Kesselman, 2001) is another widely used monitoring tool that provides
information about the available resources on the Grid and their status. It is based on
the GLUE schema,'* which is used to provide a uniform description of resources
and to facilitate interoperation between Grid infrastructures. Other approaches for
large-scale systems have been developed such as MonALISA (Newman et al.,
2003), which is an extensible monitoring framework for hosts and networks in large-
scale distributed systems, and Palantir (Guim, Rodero, Tomas, Corbalan, & Labarta,
2006) that was designed to unify the access to different monitoring and information
systems for large scale resource-sharing across different administrative domains,
thus providing general ways for accessing all this information. Furthermore, dif-
ferent Grid portal frameworks incorporate monitoring functionalities such as in the
HPC-Europa Single Point of Access (Guim et al., 2007) and the P-GRADE Portal
(Podhorszki & Kacsuk, 2001).

14http://forge.ogf .org/sf/projects/glue-wg.
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Several data centers that provide resources to Cloud systems have adopted
Ganglia as a monitoring tool. However, virtualized environments have more spe-
cific needs that have motivated Cloud computing technology providers to develop
their own monitoring system. Some of them are summarized below:

Amazon CloudWatch' is a web service that provides monitoring for Amazon
Web Services Cloud resources such as Amazon EC2. It collects raw data
from Amazon Web Services and then processes the information into readable
metrics that are recorded for a period of two weeks. It provides the users
with visibility into resource utilization, operational performance, and overall
demand patterns - including metrics such as CPU utilization, disk reads and
writes, and network traffic.

Windows Azure Diagnostic Monitor'® collects data in local storage for every
diagnostic type that is enabled and can transfer the data it gathers to an Azure
Storage account for permanent storage. It can be scheduled to push the col-
lected data to storage at regular intervals or it can be requested an on-demand
transfer whenever this information is required.

The OpenNebula Information Manager (IM) is in charge of monitoring the

different nodes in a Cloud. It comes with various sensors, each one respon-
sible for different aspects of the compute resource to be monitored (CPU,
memory, hostname). Also, there are sensors prepared to gather information
from different hypervisors.
The monitoring functionality of Aneka (Vecchiola, Chu, & Buyya, 2009)
is implemented by the core middleware, which provides a wide set of ser-
vices including also negotiation of the quality of service, admission control,
execution management, accounting and billing. To help administrators to
tune the overall performance of the Cloud, the Management Studio provides
aggregated dynamic statistics.

Nimsoft Monitoring Solution!” (NMS), built on the Nimsoft Unified
Monitoring Architecture, delivers monitoring functionality to any combina-
tion of virtualized data center, on hosted or managed infrastructure, in the
Cloud on ITaaS or PaaS or delivered as SaaS services. Specifically, it pro-
vides unified monitoring for data centers, private Clouds and public Clouds
such as Amazon WS, including service level and response time monitoring,
visualization and reporting.

Hyperic CloudStatus'® provides open source monitoring and management
software for all types of web applications, whether hosted in the Cloud
or on premise, including Amazon Web Services and Google App Engine.
CloudStatus gives users real-time reports and weekly trends on infrastructure
metrics.

http://aws.amazon.com/cloudwatch/
16http://www.microsoft.com/windowsazure
http://www.nimsoft.com/solutions/

18 http://www.hyperic.com/
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8.4.4 Autonomic Computing

Inspired by the the autonomic nervous system, autonomic computing aims at design-
ing and building self-managing systems and has emerged as a promising approach
for addressing the challenges due to software complexity (Jeffrey & Kephart, 2001).
An autonomic system is able to make decisions to respond to changes in operat-
ing condition at runtime using high-level policies that are typically provided by an
expert. Such a system constantly monitors and optimizes its operation and auto-
matically adapts itself to changing conditions so that it continues to achieve its
objectives.

There are several important and valuable milestones to reach fully autonomic
computing: first, automated functions will merely collect and aggregate information
to support decisions by human users. Later, they will serve as advisors, suggesting
possible courses of action for humans to consider.

Self-management is the essence of autonomic computing and has been defined in
terms of the following four aspects of self-management (Jeffrey & Kephart, 2001).

o Self configuration: Autonomic systems will configure themselves automatically
in accordance with high-level policies representing business-level objectives that,
for example, specify what is desired and not how it is to be accomplished. When
a component is introduced, it will incorporate itself seamlessly, and the rest of
the system will adapt to its presence.

o Self optimization: Autonomic systems will continually seek ways to improve their
operation, identifying and seizing opportunities to make themselves more effi-
cient in performance and/or cost. Autonomic systems will monitor, experiment
with, and tune their own parameters and will learn to make appropriate choices
about keeping functions or outsourcing them.

o Self healing: Autonomic computing systems will detect, diagnose, and repair
localized problems resulting from bugs or failures in software and hardware.

e Self protection: Autonomic systems will be self-protecting in two senses. They
will defend the system as a whole against large-scale, correlated problems arising
from malicious attacks or cascading failures that remain uncorrected by self-
healing measures. They also will anticipate problems based on early reports from
sensors and take steps to avoid or mitigate them.

Figure 8.5 shows one basic structure of an autonomic element as proposed by
IBM. It consists of autonomic manager which monitors, analyzes, plans and exe-
cutes based on collected knowledge, and external environments including human
users and managed elements. The managed element could be hardware resources
such as CPU, memory and storage, software resources such as a database, a direc-
tory service or a system, or an application. The autonomic manager monitors the
managed elements and its external environment including changing users require-
ments, and analyzes them, computes a new plan reflecting changing conditions and
executes this plan.
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Fig. 8.5 One basic structure
of an autonomic element.
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Autonomic concepts have been effectively applied to distributed computing envi-
ronments such as Grids (Parashar, Li, & Chandra, 2010), and communication/
networking systems (Vasilakos, Parashar, Karnouskos, & Pedrycz, 2010), to monitor
resources, changing workloads or models (Quiroz, Gnana-Sambandam, Parashar,
& Sharma, 2009), and then adjust resource provisioning to satisfy requirements
and constraints (Quiroz, Kim, Parashar, Gnanasambandam, & Sharma, 2009). Such
capabilities have been incorporated into Cloud systems. We use CometCloud (Kim,
el Khamra, Jha, & Parashar, 2009) as a use case that provides autonomic capabil-
ities at all levels. CometCloud is an autonomic computing engine for Cloud and
Grid environments. It is based on decentralized coordination substrate, and sup-
ports autonomic applications on highly heterogeneous and dynamic Cloud/Grid
infrastructures, as well as integration of public/private Clouds/Grids. For example,
it supports autonomic cloudbursts, where the goal is to seamlessly (and securely)
bridge private enterprise Clouds and data centers with public utility Clouds or Grids
on-demand, to provide an abstraction of resizable computing capacity that is driven
by user-defined high-level policies. It enables the dynamic deployment of applica-
tion components, which typically run on internal organizational compute resources,
onto a public Cloud or Grids (i.e., cloudburst) to address dynamic workloads,
spikes in demands, economic/budgetary issues, and other extreme requirements.
Furthermore, given the increasing application and infrastructure scales, as well as
their cooling, operation and management costs, typical over-provisioning strategies
are no longer feasible. Autonomic cloudbursts can leverage utility Clouds to provide
on-demand scale-out and scale-in capabilities based on a range of metrics.

Other examples of Clouds technologies that are adopting autonomic computing
techniques from Grid computing are Aneka (Chu, Nadiminti, Jin, Venugopal, &
Buyya, 2007), VioCluster (Ruth, McGachey, & Xu, 2005) and CloudWatch.

8.4.5 Scheduling, Metascheduling, and Resource Provisioning

In the last few decades a lot of effort has been devoted to the research of job schedul-
ing, especially in centers with High Performance Computing (HPC) facilities. The
general scheduling problem consists of, given a set of jobs and requirements, a set
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of resources, and the system status, deciding which jobs to start executing and in
which resources. In the literature there are many job scheduling policies, such as
the FCFS approach and its variants (Schwiegelshohn & Yahyapour, 1998a, 1998b;
Feitelson & Ruddph, 1995). Other policies use estimated application information
(for example the execution time) which make no assumptions such as Smallest Job
First (SJF) (Majumdar, Eager, & Bunt, 1988), Largest Job First (LJF) (Zhu & Ahuja,
1993), Smallest Cumulative Demand First (SCDF) (Leutenegger & Vernon, 1990)
or Backfilling (Mu’alem & Feitelson, 2001), which is one of the most used in HPC
systems.

In Grid computing, scheduling techniques have evolved to incorporate other
factors, such as the heterogeneity of resources or geographical distribution. The
software component responsible for scheduling tasks in Grids is usually called
meta-scheduler or Grid resource broker. The main actions that are performed by
a Grid resource broker are: resource discovery and monitoring, resource selection,
job execution, handling and monitoring. However, it may be also responsible for
other additional tasks such as security mechanisms, accounting, quality of service
(QoS) ensuring, advance reservations, negotiation with other scheduling entities,
policy enforcement, migration, etc. A taxonomy and survey of Grid brokering sys-
tems can be found in (Krauter, Buyya, & Maheswaran, 2002). Some of their most
common characteristics are discussed as follows:

e They can involve different scheduling layers through several software compo-
nents between the Grid resource broker and the resources where the application
will run. Thus, the information and control available at the resource broker level
is far less than that available at a cluster scheduling level.

e A Grid resource broker usually does not have ownership or control over the
resources. Moreover, the cluster scheduling systems may have their own local
policies that can conflict with the Grid scheduling strategy.

e There are conflicting performance goals between the users and the resource own-
ers. While the users focus on optimizing the performance of a single application
for a specified cost goal, the resource owners aim to obtain the best system
throughput or minimize the response time.

While in Grid computing the most important scheduling tasks are optimiz-
ing applications response time and resource utilization, in Cloud computing other
factors become crucial such as economic considerations and efficient resource pro-
visioning in terms of QoS guarantees, utilization and energy. As virtualized data
centers and Clouds provide the abstraction of nearly-unlimited computing resources
through the elastic use of consolidated resources pools, the scheduling task shifts to
scheduling resources (i.e. provisioning application requests with resources). The
provisioning problem in question is how to dynamically allocate resources among
VMs with the goal of optimizing a global utility function. Some examples are min-
imizing resource over-provisioning (waste of resources) and maximizing QoS (in
order to prevent falling on under-provisioning that may led to providers revenue
loss). Different provisioning techniques for data centers have been proposed such



204 D. Villegas et al.

as those based on gang scheduling (Wiseman & Feitelson, 2003), those based on
advance reservations (Sotomayor, Montero, Llorente, & Foster, 2008), those based
on energy efficiency (Nathuji & Schwan, 2007; Ranganathan, Leech, Irwin, &
Chase, 2006) or those based on multi-tiered resource scheduling approaches (Song,
Wang, Li, Feng, & Sun, 2009).

Although Cloud computing scheduling is still challenging, several techniques
developed for Grid environments can be taken into account. Existing job schedul-
ing techniques can be also applied in virtualized environments, specially when
the application requests rates are those expected in future Clouds. In fact, some
approaches have started addressing this issue. Advance reservation developed for
Grid scheduling is used in the Haizea lease manager for OpenNebula. Different
SLA management policies for Grid computing have been extended for Clouds such
as those proposed by Buyya, Yeo, Venugopal, Broberg, & Brasdic, (2009). Market-
oriented allocation of resources policies developed for Grids have been realized for
Clouds in Aneka (Buyya et al., 2009). Sodan (2009) proposes adaptive schedul-
ing, which can adjust sizes of parallel jobs to consider different load situations and
different resource availability through job re-shaping and VM resizing. Moreover,
Cloud computing scheduling strategies can leverage Grid multi-layer architectures
and strategies such the cross-layer QoS optimization policy proposed by Chunlin
and Layuan (2008).

8.4.6 Interoperability in Grids and Clouds

One goal of Grid computing is to provide uniform and consistent access to resources
distributed in different data centers and institutions. This is because the majority of
Grids are formed based on regional as opposed to local initiatives so interoperation
is a key objective. Some examples are TeraGrid in US (Catlett, Beckman, Skow, &
Foster, 2006), GridX1 in Canada (Agarwal et al., 2007), Naregi in Japan (Matsuoka
et al., 2005) and EGEE in Europe (Berlich, Hardt, Kunze, Atkinson, & Fergusson,
2006). Interoperation is addressed at various architectural points such as the access
portal, resource brokering function, and infrastructure standardization.

Some production Grid environments, such as HPC-Europa (Oleksiak et al.,
2005), DEISA (Alessandrini & Niederberger, 2004) and PRACE,!? approach
interoperability using a uniform access interface to application users. Software
layers beneath the user interface then abstract the complexity of the underlying
heterogeneous supercomputing infrastructures.

One tool that takes this approach for Grid interoperation is meta-brokering
(Kertesz & Kacsuk, 2008), illustrated in Fig. 8.6. Meta-brokering supports the
Grid interoperability from the viewpoint of the resource management and schedul-
ing. Many projects explore this approach with varied emphases. Examples grouped
loosely by primary technical foci, are reviewed below.

19http://www.prace—project.eu/
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Fig. 8.6 Meta-brokering architecture

e Infrastructure interoperability

GridWay (Huedo, Montero, & Llorente, 2004), which is mainly based on
Globus, supports multiple Grids using Grid gateways (Huedo, Montero, &
Llorente, 2004) to access resources belonging to different domains. GridWay

forwards local user requests to another domain when the current one is over-
loaded.

Latin American Grid Meta-brokering (Badia et al., 2007; Bobroff et al., 2008),
proposed and implemented a common set of protocols to enable interoperability
among heterogeneous meta-schedulers organized in a peer-to-peer structure. The
resource domain selection is based on an aggregated resource information model
(Rodero, Guim, Corbalan, Fong, & Sadjadi, 2010) and jobs from home domain
can be routed to peer domains for execution.

e Resource Optimization in interoperated Grids

Koala Grid Scheduler (Mohamed & Epema, 2008) is focused on data and pro-
cessor co-allocation. To inter-connect different Grid domains as different Koala
instances. Their policy is to use resources from a remote domain only if the local
one is saturated. They use delegated matchmaking (Iosup, Epema, Tannenbaum,
Farelle, & Livny, 2007) to obtain the matched resources from one of the peer
Koala instances without routing the jobs to the peer domains.

InterGrid (Assuncao, Buyya, & Venugopal, 2008) promotes interlinking differ-
ent Grid systems through peering agreements based on economic approaches to
enable inter-grid resource sharing. This is an economic-based approach, where
business application support is a primal goal, and this also supposed to establish
sustainability.
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VIOLA MetaScheduling Service (Seidel, Waldrich, Zeigler, Wieder, &
Yahyapour, 2007) implements Grid interoperability via SLA mechanisms
(WS-Agreement) and provides co-allocation of multiple resources based on
reservation.

Other projects explore the interoperability of Grid systems through the
use of standard mechanisms, protocols and interfaces. For example, the Grid
Interoperability Project (GRIP) (Brooke, Fellows, Garwood, & Goble, 2004), the
Open Middleware Infrastructure Institute for Europe (OMII-Europe) project®”
or the work done within the P-GRADE portal (Kacsuk, Kiss, & Sipos, 2008).
GRIP was one of the first proposals enabling interoperability between UNICORE
and Globus Toolkit. OMII-Europe aimed to influence the adoption and devel-
opment of open standards that facilitate interoperability between glLite (Lawre
et al., 2006) and UNICORE such as OGSA BES (Foster et al., 2008) or JSDL
(Anjomshoaa et al., 2005). The P-GRADE portal tries to bridge different Grid
infrastructures by providing access to standard-based interoperable middleware. The
Grid Interoperation Now Community Group (GIN-CG)?! and the Production Grid
Infrastructure Working Group (PGI-WG)?? of the OGF also address the problem
of Grid interoperability. In the former case, driving and verifying interoperation
strategies and, in the latter case, oriented to production Grid infrastructures.

While significant progress on interoperation has been achieved in Grid comput-
ing, interoperability among Cloud providers has yet to be explored. While enthu-
siasm in establishing Cloud interoperability is limited among the for-profit Cloud
providers, there are many pursuers in the academic and scientific communities.

The RESERVOIR project®® addresses Cloud interoperability with a modular,
extensible Cloud architecture based on federation of Clouds. In the RESERVOIR
model, each infrastructure provider is an autonomous business with its own busi-
ness goals. A provider federates with other providers based on policies aligned
with the site’s business goals. In the context of RESERVOIR, Grid interfaces and
protocols may enable the required interoperability between the Clouds or infras-
tructure providers. A similar initiative is the Nuba project>* whose main aim is the
development of a federated IaaS Cloud platform to facilitate the easy and auto-
matic deployment of Internet business services, allowing dynamic scaling based on
performance and business goals criteria.

Some Cloud standardization groups have started working on defining com-
mon interfaces for interoperation. The Open Grid Forum Open Cloud Computing
Interface (OCCI) working group® of OGF is working on defining an API

2Ohttp://www.omii-europe.org

21 http://forge.gridforum.org/st/projects/gin
22http://forge.ogf.org/sf/projccts/pgi—wg

3 http://www.reservoir-fp7.eu/
24http://nuba.morfeo—project.org/

25 http://forge.ogf.org/st/projects/occi-wg
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specification for remote management of Cloud computing infrastructure, allowing
for the development of interoperable tools for common tasks including deploy-
ment, autonomic scaling and monitoring. Project OpenNebula and RESERVOIR
projects have provided OCCI-compiant implemenations. The Cloud Computing
Interoperability Forum (CCIF)?® is a vendor neutral, not for profit community of
technology advocates, and consumers dedicated to driving the rapid adoption of
global Cloud computing services.

While encouraging activities in the area of interoperable Clouds are occuring,
Grid technologies are more mature. Thus, it is promising to extend these to the
Cloud, particularly in the research and evaluation of scheduling and resource selec-
tion strategies. While Grid computing focuses on utilization, Cloud computing is
more atuned to factors such as QoS, cost, and energy efficiency. Finally, Clouds will
want to take advantage of elastic use of their resources in order to optimize both
resource usage (and thus, Cloud providers revenue) and QoS given to the users.

8.4.7 Security and User Management

Clouds currently lack many of the mechanisms required for fluid intersite operation
of which security is a key enabling factor. Interoperability mandates common secu-
rity mechanisms that can be translated to the models chosen by local administrators.
Additionally, users need to be able to submit requests regardless of the institutions
involved in the process of performing the requested task or providing the necessary
data. This requires introduction to the Cloud of a mechanism of privilege delegation
enabling single sign-on. Finally, collaboration between multiple institutions sharing
resources requires development of new methods to manage user privileges.

These challenges have already been addressed in Grid computing where a pri-
mary goal is to allow sharing of resources among Virtual Organizations. A VO
defines a group of people and resources that can spawn across multiple adminis-
trative domains, and allows the definition of fine grained security policies on those
resources. The Grid solutions are described in the context of Globus middleware
and show how the concepts can be applied to Clouds.

Users in the Grid are granted privileges by site administrators based on their cre-
dentials, which are provided by a trusted Certificate Authority. The Grid Security
Infrastructure (GSI) (Welch et al., 2003) is the component of the Globus middle-
ware responsible for orchestrating security across different sites. GSI is used by job
execution, file transfer, and resource discovery and monitoring protocols to ensure
that all operations started by a user are allowed in the target resources.

GSI uses X.509 Public Key Infrastructure (PKI) and SSL/TLS protocols for
transport encryption. This allows individuals belonging to organizations to trust
foreign credentials issued by a CA without affecting their organization’s security
measures. However, two additional requirements arise from the dynamic nature of
Grid systems.

26http://cloudforum.org/
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Single sign-on: Users in the Grid need to access multiple resources and ser-
vices with different authentication models. It would be burdensome if each
time a user had to perform an action in a remote resource he had to enter a
passphrase to use his private key to authenticate himself. Possible solutions
such as caching the passphrase could lead to additional security problems.

Privilege delegation: Due to the dynamic nature of the Grid, users often need to
delegate their privileges to other services. This occurs when requests require
the orchestration of different resources, or when the user creates a new ser-
vice to perform a set of capabilities. Following the principle of least privilege,
a set of minimum capabilities should be transferred to these services so they
can execute.

These requirements are fulfilled by an extension to X.509 certificates called
proxy certificates (Welch et al., 2004). Proxy certificates are not issued by a CA,
which would be burdensome given their frequency of use and dynamic nature.
Instead, the issuer is identified by another public key certificate. This allows tempo-
rary certificates to be signed and used for short periods of time without the need to
access the user’s long time private keys. The relaxed security of proxy certificates
suffices as they have a short life cycle.

Proxy certificates are also used to create new certificates with delegated sub-
sets of privileges. The GSI architecture allows different levels of granularity when
defining which of the privileges are inherited by the created proxy. Finer levels of
granularity can be implemented by using policy languages to express delegation
policies. This opportunity is effectively exploited by more advance security services
built on the GSI such as the CAS service described below.

An example of the use of proxy certificates would be a computational job that
requires access to a storage server to pull datasets to be processed. In this case,
a new proxy would be created at the first site by delegating the user’s privileges
over the network, and in turn, the resource receiving the request would transfer the
credentials to the storage server which would perform the operation based on its
authorization policies.

One problem with x509 based proxy certificates is the need for users to initiate
requests from a machine that has their private keys stored, in addition to the required
software to generate a proxy and start a request to the Grid. Often, users access the
Grid through web portals, making it difficult to generate their proxy certificates.
The MyProxy credential repository was created to solve this issue and permit any
user to access Grid resources through a Grid portal using a web browser (Novotny,
Tuecke, & Welch, 2001). The MyProxy model adds a repository service where
users delegate their credentials and associate them to a user name and password.
Subsequently, users can log in to a MyProxy enabled web portal and retrieve and
use a previously stored Grid certificate. Certificates delegated to MyProxy reposi-
tories have longer lifetimes than usual proxies so users just need to generate them
occasionally.

The GSI infrastructure allows resource owners to define access policies in an ad-
hoc fashion: usually, site administrators are in charge of defining a mapping from
Distinguished Names (DNs) to the local security method. This poses a number of
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problems, specially when dealing with large VOs that are distributed across dif-
ferent institutions: the first problem is the burden added to administrators to include
access policies for all users, specially if there is a need of defining finer grained ones
that vary from one resource to another. Second, systems administrators in charge of
assigning access policies don’t have a big picture of the project’s needs in terms of
authorization structure.

The Community Authorization Service (CAS) (Pearlman, Welch, Foster, &
Kesselman, 2002) is an extension build on the GSI that provides additional
mechanisms to address the deficiencies mentioned above. The CAS abstracts the
complexity of access policies for a project into a central server that acts as a repos-
itory of policies and users, freeing local resource administrators from the task of
identifying authorization requirements. The immediate benefit of this separation of
concerns is that project administrators can define users and access rules in the CAS
server, and even create groups to define fine grained policies. Once users are added
to the CAS server, they contact it when access to a resource is needed, and the
CAS server confers them a capability that is equivalent to a proxy certificate. Site
administrators need only to validate that the intended operation is allowed for the
community the user belongs to and that the operation is allowed by the offered capa-
bility. This method scales independently from the number of users and resources. It
is directly built on the GSI, which allows its deployment with minimal changes to
existing technologies.

In the case of Cloud computing, the lack of standardization among vendors
results in multiple security models: for example, both Amazon EC2 and Eucalyptus
employ pairs of X.509 certificates and private keys for authentication. Google App
Engine, an example of PaaS solution, requires users to first log-in via Google
Accounts. The variety of methods makes it difficult to create new opportunities for
interoperation, and the fragmentation of security models hinders the reuse of newly
developed features.

The OGF Open Cloud Computing Interface Working Group (OCCI) has made
a step towards proposing a standardized set of operations, and in its specification
it suggests that implementations may require authentication using standard HTTP
mechanisms and/or encryption via SSL/TLS. The latest versions of OpenNebula
support this specification for communicating with their Cloud controller. This defi-
nition represents a possibility to create common grounds for IaaS implementations,
providing uniform security paradigms among different vendors.

However, there is still much work in order to achieve a good security infras-
tructure in Clouds. Methods to specify trust among certificate issuers and resource
owners have yet to be implemented, especially for scenarios in which different orga-
nizations participate in sharing them. Models such as the GSI infrastructure, where
different providers trust various Certifying Authorities without compromising the
rest of institutions, would allow the scaling of Clouds outside of single institution
boundaries. In those cases, additional techniques to manage users and their asso-
ciated privileges would be necessary to avoid centralization, and new distributed
methods for accounting would be required. Clouds can learn from these solutions in
order to define new, standardized interfaces that allow secure, inter-organizational
communication.
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8.4.8 Modeling and Simulation of Clouds and Grids

Since it is difficult or even not feasible to evaluate different usages on real Grid
testbeds, different simulators have been developed in order to study complex scenar-
10s. Simulations allow us to research policies for large and complex configurations
with numerous jobs and high demand of resources and to easily include modifi-
cations and refinements in the policies. There are many rich simulation models
developed by the Grid community.

The GridSim (Sulistio, Cibej, Venugopal, Robic, & Buyya, 2008) simulator
has been widely used by many researchers to evaluate Grid scheduling strategies.
As described by the GridSim project team it provides a comprehensive facil-
ity to create different classes of heterogeneous resources that can be aggregated
using resource brokers. GangSim (Dumitrescu & Foster, 2005) allows the sim-
ulation of complex workloads and system characteristics. It is also capable of
supporting studies for controlled resource sharing based on SLAs. The SimGrid
toolkit (Legrand, Marchal, & Casanova, 2003) is a non workload based simulator
that allows the evaluation of distributed applications in heterogeneous distributed
environments. In these last models, almost all of them model how the jobs are
scheduled at the multi-site level (by a given broker or meta-scheduler) but not how
the jobs are scheduled and allocated once sent to the final computing resources.
In a different approach, the Alvio simulator (Guim, Corbalan, & Labarta, 2007)
and Teikoku (Grimme et al., 2007) model all the scheduling layers that are
involved in Grid architectures, from meta-brokering policies (see Section 8.4.6)
to local job scheduling strategies. DGSim (Iosup, Sonmez, & Epema, 2008) is
another relevant simulation framework, which also allows Grid simulation with
meta-brokering approaches but, as the former approaches, it does not model local
scenarios.

Simulation tools are specially important for Cloud computing research due to the
fact that many Clouds are also still in development. CloudSim (Buyya, Ranjan, &
Calheiros, 2009) models and simulates Cloud computing environments support-
ing multiple VMs within a data center node. In fact, VM management is the
main novelty of this simulator. It also allows simulation of multiple federated
data centers to enable studies of VM migration policies for reliability and auto-
matic scaling of applications. However, several aspects of Cloud computing have
not been addressed yet such as the simulation of multiple layers simultaneously.
Therefore, the lack of simulators for Cloud computing motivates the extension
of existing simulators that were developed for Grid systems and have similar
requirements. Some of the existing Grid simulators are described below. While
many Cloud simulation models are yet to be developed, leveraging some of the
simulation models and experiences would likely accelerate the development for
Clouds.

Workloads are crucial to evaluate policies using simulation tools. Although dif-
ferent workload models have been proposed, traces from logs of production systems
capture better the behavior of realistic scenarios. There are different publicly avail-
able workload traces from production system such as those provided by the Grid
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Observatory,27 which collects, publishes, and analyzes data on the behavior of
the EGEE Grid.?® This is currently one of the most complex public Grid traces
with higher frequency of application request arrivals than other large Grids such
as Grid5000. However, any of them captures the heterogeneous nature of virtual-
ized Cloud infrastructures with multiple geographically distributed entry points and
potential high job arrival rates.

Furthermore, since the traces from different systems are in different formats,
using standard formats is very important. Within the Parallel Workload Archive,? as
well as providing detailed workload logs collected from large scale parallel systems
in production use such as San Diego Supercomputer Center or Los Alamos National
Lab, Feitelson et al. proposes the Standard Workload Format (SWF) (Chapin et al.,
1999) that was defined to ease the use of workload logs and models. Iosup et al.
extended this idea for Grids with the Grid Workload Archive (Iosup et al., 2008) and
with the Failure Trace Archive (Kondo, Javadi, Iosup, & Epema, 2010) to facilitate
the design, validation, and comparison of fault-tolerant models and algorithms.

There is a lack of workload traces and standard models for Clouds. This is an
important obstacle to model and simulate realistic Cloud computing scenarios due
to Cloud workloads may be composed of different application types, including ser-
vice requests that have different behavior than the modeled in the current public
traces. These existing approaches for parallel systems and Grid systems can be
extended to Cloud computing with a definition of a standard Cloud workload format.
Workload logs collected from production or research Cloud systems should be also
made publicly available to facilitate the research of Cloud computing techniques
through simulation.

8.5 Concluding Remarks

Grids and Clouds have many similarities in their architectures, technologies and
techniques. Nowadays, it seems Cloud computing is taking more significance as
a means to offer an elastic platform to access remote processing resources: this is
backed up by the blooming market interest on new platforms, the number of new
businesses that use and provide Cloud services and the interest of academia in this
new paradigm. However, there are still multiple facets of Cloud computing that
need to be addressed, such as vendor lock-in, security concerns, better monitoring
systems, etc. We believe that the technologies developed in Grid computing can be
leverage to accelerate the maturity of the Cloud, and the new opportunities presented
by the latter will in term address some of the shortcomings of the Grid.

As this chapter tries to convey, perhaps the area in which Clouds can gain the
most from Grid technologies is in multi-site interoperability. This comes naturally

27http://www. grid-observatory.org/
28 http://www.eu-egee.org/
29http://www.cs.huji.ac.il/labs/pa.rallel/workload/
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from the fact that the main purpose of Grid systems is to enable remote sites under
different administration policies to establish efficient and orchestrated collaboration.
This is arguably one of the weakest points in Clouds, which usually are services
offered by single organizations that enforce their -often proprietary- protocols, lead-
ing for examples to the already identified problem of vendor lock-in. On the other
hand, Grid computing, through the use of well defined standards, has achieved site
interoperability as it can be seen by the multiple computing and data Grids used by
projects in fields as particle physics, earth sciences, genetics and economic sciences.

Another path worth diving into is the one exploring how the new paradigm
of Cloud computing can benefit existing technologies and solutions proposed by
the Grid community: the realization of utility computing, elastic provisioning of
resources, or the homogenization of heterogeneous resources (in terms of hardware,
operating systems and software libraries) through virtualization bring a new realm of
possible uses for vast, underutilized computing resources. New consolidation tech-
niques allow for studies on lower energy usage for data centers and diminished costs
for users of computing resources. There is effectively a new range of applications
that can be run on Clouds because of the improved isolation provided by virtual-
ization techniques. Thus, existing software that was difficult to run on Grids due
to hard dependencies on libraries and/or operating systems can now be executed
on many more resources that have been provisioned complying with the required
environment.

Finally, there are some outstanding problems that need to be considered which
prevent some users from switching to new Cloud technologies. These problems need
to be tackled before we can fully take advantage of all the mentioned opportunities.
Other authors, such as (Armbrust et al., 2009), have already listed several of such
problems. Some examples are:

1. In certain cases, when processes require intense use of I/O, virtualized envi-
ronments offer lower performance than native resources. There is a range of
scientific applications that have a high communication demand, such as those
that rely on synchronous message passing models. Those applications do not
offer good performance on Cloud systems.

2. Even though Clouds offer the promise of elasticity of computing resources that
would appear to users as endless supply, there are scenarios in the scientific
world for which the resources offered by a single Cloud would not be enough.
Once the demand for processing power reaches the maximum capacity for a
provider, there are no additional means to acquire new resources for the users,
if need be. Attempting to use different providers as a back up would mean dif-
ferent protocols, security schemas and new APIs to be employed. For example,
the Large Hadron Collider (LHC) project requires processing power not avail-
able by any single organization and if deployed to the Cloud, there is a need for
interoperability among different Cloud vendors.

We hope that the efforts being taken by numerous researchers in this area identify
and address these shortcomings and lead to better and more mature technologies that



8 The Role of Grid Computing Technologies in Cloud Computing 213

will improve the current Cloud computing practices. In these efforts, we believe
that a good knowledge of existing technologies, techniques and architectures such
as those developed in the field of Grid computing will greatly help accelerating the
pace of research and development of the Cloud, and will ensure a better transition
to this new computing paradigms.
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Chapter 9
Cloudweaver: Adaptive and Data-Driven
Workload Manager for Generic Clouds

Rui Li, Lei Chen, and Wen-Syan Li

Abstract Cloud computing denotes the latest trend in application development for
parallel computing on massive data volumes. It relies on clouds of servers to han-
dle tasks that used to be managed by an individual server. With cloud computing,
software vendors can provide business intelligence and data analytic services for
internet scale data sets. Many open source projects, such as Hadoop, offer various
software components that are essential for building a cloud infrastructure. Current
Hadoop (and many others) requires users to configure cloud infrastructures via pro-
grams and APIs and such configuration is fixed during the runtime. In this chapter,
we propose a workload manager (WLM), called CloudWeaver, which provides auto-
mated configuration of a cloud infrastructure for runtime execution. The workload
management is data-driven and can adapt to dynamic nature of operator through-
put during different execution phases. CloudWeaver works for a single job and a
workload consisting of multiple jobs running concurrently, which aims at maximum
throughput using a minimum set of processors.

9.1 Introduction

Cloud Computing denotes the latest trend in application development for parallel
computing on massive data volumes. It relies on clouds of servers to handle tasks
that used to be managed by an individual server. With Cloud Computing, software
vendors can provide business intelligence and data analytic services for Internet
scale data sets.
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Due to the size of these data sets, traditional parallel database solutions can
be prohibitively expensive. To be able to perform this type of web-scale anal-
ysis in a cost-effective manner, several companies have developed distributed
data storage and processing systems on large clusters of shared-nothing com-
modity servers, including Google’s App Engine! Antoshenkov (1996), Amazon’s
EC2/S3/SimpleDB2 Acker, Roth, and Bayer (2008), Microsoft’s SQL Server data
services® DeWitt, Naughton, Schneider, and Seshadri (1992) and IBM’s “Blue
Cloud” service. At the same time, open source projects such as Hadoop offer various
software components that are essential for building a cloud infrastructure. Current
Hadoop (and many others) provides virtualization of data location, concurrent exe-
cution coordination, and load balance across servers; however, it requires users to
configure cloud infrastructures via programs and APIs, moreover, such a config-
uration is fixed during the runtime. For example, an Hadoop programmer needs to
manually set the ratio of the number of servers/tasks used by reducer functions to the
number of servers used by map functions/tasks* Davlid, DeWitt, Shanker (2008). In
addition, Hadoop’s programming model is limited to SQL augmented user-defined
functions and stored procedures, which is less user-friendly and flexible compared to
SQL language supported by parallel databases. So far, Hadoop supports parallelism
to only simply tasks, instead of general purpose computation required by ETL and
DBMS.

In this chapter, motivated by the limitations of Hadoop, we deploy a work-
load manager (WLM), CloudWeaver, to provide automated configuration of a cloud
infrastructure for runtime execution. Thus, programmers do not need to set the ratio
between mappers and reducers while it is managed by CloudWeaver. Furthermore,
it is not feasible for the programmers to set such ratios when pipelining is enable
since there would be multiple tiers of servers/tasks running concurrently.

The load at each tier could change dynamically depending data distribution
and characteristics of operators. Thus, cloud computing is actually data-driven
and throughput of each operator/task changes during the phase of computation.
CloudWeaver can adapt to dynamic nature of operator throughput during different
execution phases, moreover, it works for both single job and a workload of multiple
jobs running concurrently aiming at maximum throughput with a minimum set of
Pprocessors.

The rest of the chapter is organized as follows: In Section 9.2, we provide an
overview of CloudWeaver system architecture and define the terminologies used
in this chapter. In Section 9.3, we describe the algorithm of core component of
CloudWeaver. We compare our approach with related work in Section 9.4 and
conclude and discuss some future work in Section 9.5.

Uhttp://code.google.com/appengine/.

thtp://aws.amazon.comf .

3 http://www.microsoft.com/sql/dataservices/.
“http://hadoop.apache.org/core/docs/current/mapred_tutorial htm#reducer.
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9.2 System Overview

In this section, we describe the system architecture of CloudWeaver. We first briefly
review Hadoop and its components. Hadoop is an integrated system for Map/Reduce
jobs. It runs on a large cluster with HDFS (Hadoop Distributed File System). HDFS
has a single Namenode which manages the file system namespace and regulates
access to files by clients. Each machine has a Datanode which manages storage
attached to the machine. Each data file in HDFS is stored as many small data
blocks, typically of a fixed size. Each block has 2 or 3 replicas located in different
Datanodes. Using multiple copies of small data blocks provides better availability
and accessability. The Map/Reduce execution is built on top of HDFS. The user
submits a Map/Reduce job configuration through job client. A master node will
maintain a job tracker and fork many slave nodes to execute map/reduce tasks. Each
slave node has a task tracker which manages map or reduce tasks instances on that
node.

Compared to Hadoop, our new proposed system for generic clouds, called
CloudWeaver, has the following extensions:

e Cloud Monitor is added to monitor the resource utilization of a processor and
consumption status of processor output (i.e. results). It is also used to add new
servers to the cloud or shut down some computing utilities.

e The Hadoop cloud is extended to be more generic for general purpose computing
as a generic cloud. In order to enable a generic cloud, the jobs for CloudWeaver
is also extended from MapReduce job description to DAG with general purpose
operators.

o Workload Manager (WLM) is added to automate the assignment of processors to
tasks and map jobs to processors. More detail will be given in Section 9.3.

Figure 9.1 shows the system architecture of CloudWeaver, which consists of a
job client, a central workload manager (WLM), servers (or called workers or slave
nodes), a name node and a storage system (called data node).

The generic cloud is provided as hardware computing facility. The user may or
may not know the detail of its configurations, and the configuration can be changed.
The user will submit a query job to the generic cloud from a client computer. The
query job can be considered as a marked operator tree, so that we know the work
flow or the data flow. The name of input files of some of the nodes are also included.
We assume that these input files reside in the storage system of the generic cloud.
In other words, the cloud can read the files from their names.

We also relax the assumption of HDFS by supporting both shared file systems
and non-HDFS shared-nothing file systems. In shared-file systems, each processor
can access storage directly through some common interface. Other distributed file
systems may have different storage policy. We assume that the name node and data
node in CloudWeaver provide interface to access data as small blocks similar to
HDEFS. Our scheduling algorithm is designed to run many tasks on small data blocks
to improve performance and to achieve load balance.
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Fig. 9.1 Architecture of Job: DAG of general
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9.2.1 Components

In this section, we briefly discuss the extension components of Hadoop in
CloudWeaver, which are the workload manager, cloud monitor, and generic cloud.

9.2.1.1 Workload Manager

The workload manager will accept the query job and is responsible for processing
the query. It knows the status of whole system: where’s the name node, where are the
computing servers and where ’s the storage system. Any change to the cloud envi-
ronment will be noticed by workload manager. WLM looks at the operator tree of a
query job and process the job in a data driven model. That is, WLM will schedule
small tasks to run in servers. Each task will take a small block of input and gener-
ates some output files. WLM will schedule the intermediate result file to feed other
operators until the output of the query job is generated. In this process, WLM takes
care of the generic cloud change and the working progress, so it can dynamically
utilize all available resources.

The name node maintain a directory of all the files. It could be considered as a
file system interface. The source input files reside in the storage system. When the
server process job, it will ask the name node about the accessing address of the files
and then read them or write new files as result.

The storage system can be either shared storage or a share-nothing structure. We
assume that there’s central node to maintain all the related files in the generic cloud.
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9.2.1.2 Cloud Monitor

Since the system is based on producer-consumer model, the output of lower tier
tasks is used as input for the tasks of upper tiers. Each task stores its output (i.e.
intermediate results) in the local disk by pre-defined block size. The intermediate
result blocks are then read by upper tier tasks.

If the number of intermediate result blocks is increasing, Cloud Monitor can
notice WLM to increase the number of upper tier tasks to consume increasing
number of blocks.

9.2.1.3 Generic Cloud

A generic cloud has a cluster of servers with computing power. The large data set is
either stored in the cloud or can be passed into the cloud to fulfill a data processing
job. Each data processing job is called a job for short in the rest of this chapter.
We mainly study the queries in this chapter. A task can be parallelized into small
jobs. Jobs are executed on different servers. The performance is improved by using
parallelism.

The servers can have different computing power and storage size. Scheduling
jobs in generic cloud to achieve best response time is a hard optimization problem.
A predefined scheduling algorithm is hard to deal with the changing environment.
In this chapter we solves the scheduling problem in run time. We check the data
processing requirement and cloud status in run time, determine the number of jobs
and the assignment of jobs to servers. Because each partition and scheduling step
is based on available data need to be processed, we believe that this data driven
method can best balance the workload of servers in the generic cloud and achieve
best performance.

We consider SQL like query processing for large data set with MapReduce
support.

Query Job

A user query job can be described by an operator graph. The operators include
Extract, Join, Aggregate functions and Map Reduce. The map and reduce function
is provided by user.

In the parallel environment, the behavior of an operator can be partitioned into
several small jobs and run in parallel on different servers. Each job can be run by
an executable file. The command takes some input files and generate output files.
In this way, we can direct data files and executable file to different servers, the the
executable file consume the input files and produce outputs.

Input

We assume that the input data are very large. The large input files may be considered
as tables in an RDMBS. We can consider each file as a big table.
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In order for the WLM to make use of parallelism, WLM needs to know how each
operator can be parallelized. For example, a simple table extract can be arbitrarily
partitioned into many small files. Each file can be processed by an extract task on
any server. The sort operator can also be parallelized by many small sorting tasks
with a merger task, but the output can not be fixed unless all the input data has been
processed. This kind of operator is called a blocking operator.

The join operator is another complex example. We can partition the input and
use many servers to process join. When WLM wants to schedule more servers to
process join, the status of original join servers need to be migrated or changed.

The differences of our work compared with others is that we do not assume
SMP or cluster with identical servers. Instead, we deal with machines with different
power. We deal with dynamic data throughput nature. For example, when we have
a join, the processing speed is a constant, but the result output rate varies during the
whole processing period.

Our framework also has a big difference compared with Map/reduce or Hadoop.
The Hadoop system aims to provide abstraction (virtualization) for the underlying
hardware/file location/load balancing so that the application programs can focus
on writing maps and reduce functions. In our work, CloudWeaver provides similar
functionality but focuses on coordinating execution of complex jobs (virtualization
of execution flow management and optimization from the programmers). The exe-
cution of Map/Reduce or Hadoop is much simpler since the execution only have
two phases and does not involve complex data flow. This is similar to SQL: users
need to specify what they want using SQL and no need to specify how to execute
the queries and how to optimize it. The optimization and execution is done auto-
matically by the database system. Our system is a powerful implementation for data
processing under cloud environment.

A whole data processing system can have three important components on top
of each other. The first is user’s input to describe the job. The second is the paral-
lelization and execution. The third, like the storage is provided by the infrastructure.
In our system, the workload manager focuses on the second phase of execution by
conducting the processor/task mapping. We assume that how to select a set of right
servers is handled by the infrastructure. Hadoop and Map/Reduce provide all three
phases. This makes it not generic. Our system can deal with a user’s input job and
has good performance over arbitrary infrastructure.

Dryad is similar to our system in the sense that it parallelize a sequential data
flow, but it only has local optimization for operators that runs slower while our
algorithm schedule the whole job DAG in a data driven fashion, which is more
flexible and extensible. Besides, Dryad has not been extended to schedule multiple
jobs.

9.3 Workload Manager

In this section, we present the details of the proposed workload manager (WLM)
of the CloudWeaver. Different from the traditional parallel scheduling algorithms,
where the operator trees are extracted from the query plan and the basic execution
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units are identified for each node, in cloud, the scheduling algorithms are data
driven. In other words, the scheduling algorithm does not know the execution units
for each operator. Only when data arrive, the scheduler maps the processors to
the “ready” nodes (i.e. the node with correct input data) and starts preparing pro-
cessors to accept the output from each node. Moreover, the processor nodes are
heterogenous (different processing power) and scanned data for each operator often
change. In order to address these issues, we propose a dynamic scheduler to achieve
minimum intermediate result size and balanced workload among processors. In the
rest of this section,we first present the terminologies used to describe job and then,
formalize the scheduling methods for single and multiple jobs.

9.3.1 Terminology

In this chapter, we describe the user’s specified job with a DAG, where each node
N; is an operator that provides an abstraction of the sub-jobs and each edge E;;
between two operators N; and N; indicates the data flow from N; to N;. An example
is shown in the left of Fig. 9.2. It has six operators named as A to F and two branches
A — B — C and E — F, with the top most operator D. A and F are the leaf
nodes (I/O nodes) and B,C,D, E are non-leaf nodes (computing nodes). This input
job could be mapped to a query which performs join over two tables after some
selections and projections are done. The input job is a high level abstraction and
does not tell how to parallelize the data processing. In addition to this graph, the
cloud should know the input file name as well as the function of each operator.

We use intra-operator parallelism to speed up the execution of each operator. As
shown in the right part of Fig. 9.2, each operator can be executed by many small
tasks. Tasks are OS level processing units and can be viewed as threads/processes.

Operator \ Processor 1

D

/ Processor 2

Operator el e2

E > Job Processor 3
ed || f4
B

Processor 4

A Operator
J

Tasks

Fig. 9.2 Job, operator, processor and task
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Tasks are independent and shared nothing. A task can be assigned the whole pro-
cessor or part of the processor shared with other tasks. We use the term processor
for being more general. Depending on the environment which the job runs, the
processor could be a server (for cluster), a node (for grid/cloud), or a CPU/core
for SMP/CMP setting. We allocate tasks to processors in the cloud. This step is
called processor/tasks mapping. Each processor can run one or more tasks from
same operator or different operators.

An example of our data driven parallelization algorithm for the example user job
is illustrated in Fig. 9.3. In this running example, we assume a share-nothing archi-
tecture. Each processor has its local disks. The input is stored in some of the disks.
A node can process files stored in other node by file transferring through networks.
Our target is to schedule the progress of the all operators so that the intermediate
result files can be minimized and the processors in the cloud can be maximally
utilized.

‘\ . /
> local disk ’

Fig. 9.3 Example machine assignment by workload management

9.3.2 Operator Parallelization Status

Workload manager will maintain status for each operator. Specifically in our data
driven approach, it manages two sets of an operator O: an input queue of input
data file names Q.input and output queue of output data file names Q.output. User
specification will describe how the input data could be processed (for example join
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or aggregation), specifically by a particular kind of operator. Input files (data) will be
broken down into many data blocks as that have been done in Hadoop. Many data
blocks from an operator can be executed concurrently by many tasks in different
processors. A snapshot of all the input/output data and running tasks related to an
operator is treated as the operator status. Specifically, the operator status could be:
waiting for data (not started), in processing or finished. In addition to the operator
status, we should also record how the operator is parallelized, how many tasks is
assigned for each operator as well as the parameters. For example, we have assign 5
processors to execute a scanning operator at the beginning. The workload manager
will record how much has been done by each processor. Later, when more resources
(e.g. processors) are available, the workload manager may decide to distribute the
remaining to-be-scanned data to a total of 10 processors. Decision should be made
according to the operator status.

By monitoring an operator’s status, the workload manager will know how to
parallelize and schedule the execution of each operator. The input queue to each
operator will be monitored as an input buffer. When the input buffer grows rapidly,
it indicates that more computing power is needed at the operator and if possible,
workload manager should assign more processors to consume the input. The running
statistics can be collected from running tasks on different processors, which can be
used by the workload manager to map appropriate processors to operator/task in
order to achieve better processor usage.

9.3.3 Job Execution Algorithm

Our data driven algorithm is to determine the processors and the schedule of tasks
for each operator. Given a data processing job, we have two types of operators:
blocking operators and non-blocking operators. If an operator can not generate any
output before all its input data are ready, we call it a blocking operator. The successor
operators of a blocking operator can not be started until the blocking operator is
finished, for example a sorting operator. On the contrary, a non-blocking operator
and its success operators can be execute in a pipelined fashion, for example a scan
operator followed by a join operator.

Given an operator tree corresponding to a user job description, we consider three
scenarios that our algorithm will target. The first two are discussed for non-blocking
operators and the last one is presented for blocking operators. Workload manager
aims at dynamically assigning a set of processors to each operator, called candi-
date processor set of an operator. The tasks of the operator is scheduled within the
candidate processor set. By controlling the size of candidate processor set, work-
load manager actually controls the power of execution for a specific operator. An
operator with no task to execute will have an empty candidate processor set.

1. Assume that we have sufficient resources and operators are non-blocking ones. In
this case, whenever an operator has a certain amount of input, the workload man-
ager will give a non-empty candidate processor set to the operator and schedule
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tasks. Workload manager will aims at full usage of each processor. When the
data arrival rate change and the current candidate processor set does not match to
input data queue, the workload manager can increase/reduce candidate processor
set size.

2. Assume that we have limited resources and operators are non-blocking ones. In
this case, when an operator has a certain amount of input, the workload manager
may not always be able to find available processors for the operator. Assume
that all the operators are non-blocking operators and data driven execution will
start from the leaf operator. When there are data for other operators, workload
manager will start the operator if possible candidate processor set can be found.
The workload manager will try to schedule more operators at the same time in a
pipeline fashion, not one by one. If resources are limited, we can reduce the size
of candidate set for each leaf node operator and assign processors to operators in
the data tree. After an operator finished all its work, its candidate processor set
can be released and used by other operators.

3. Assume that some of the operators are blocking operators. In this case, we could
not extend pipeline execution further to parent operators of blocking operators.
For an operator N;, all the operators under its node in the operator tree have been
assigned candidate processor set. We refer to the all the processors assigned to
this branch as branch processor set. If N; is a blocking operator, the workload
manager can start to assign processors to new branches in the operator tree which
have input. If there are no other branch, the remaining available processors can
be added to the branch of N;. We add processor from the leaf node until N;, which
means that we assign more CPU power to the source operators and push data in a
bottom up style. When a leaf operator is complete, limited resource can be moved
to upper level operators.

There may exist many possible approaches to determine which operators to
schedule first. Many optimization solutions may be used. In our work, we first
focus on a simple bottom up manner and choose operators in a particular order (for
example post order), as long as the operator can be started. We aim to achieve full
usage of CPU power and better progress management of pipeline along the operator
tree.

9.3.4 Dynamic Parallelization for Job Execution

Given a job DAG with n operators, Ny, . .., N,, and a set of m processors with pro-
cessing power, P1, ..., Py, respectively, we assume that the edge E; ; between N; and
Nj is a pipeline edge if N; is not a blocking operator. A pipeline edge indicates that
operator N;’s partial output can be passed to N; for the next level execution. If N; is a
blocking operator, we call the edge E;; as a blocking edge, which indicates that oper-
ator N; has to wait all the data from its input operations until any result can be given.
The dynamic scheduler aims to maximize the parallelism and balance the workloads
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among processors. Since the required processors for each operator(except for the
leaf nodes) are unknown before the data is ready, the dynamic scheduler has to per-
form an “exploration” phase to estimate the input and output rate of each operator.
Specifically, the scheduler first assigns one processor P; to each scan operator (a.k.a
leaf operator) N;. For this step, we can randomly pick a processor and assign to a
leaf level operator’s tasks. Assume the output rate of operator N; running on proces-
sor Pj is Ry, and the output results are fed into another operator Ny as its input. If
the edge between N; and N is a pipeline edge, in order to make the two operators
N; and Nj run concurrently, the scheduler needs to assign processors to consume the
output from N; with an approximately the same rate R;y. Similarly, after process-
ing operator Ny, the scheduler will know the output rate of Ny and do the processor
assignment accordingly. The same procedure is repeated until a blocking edge is
encountered. In this case, the blocking operator, such as sort/aggregation, will wait
until all the source data from its child operators arrive. Once all the sources are
ready for processing, we schedule appropriate tasks to match the input of blocking
operator.

The processor assignment discussed so far only assumes that there are enough
processors to be assigned. Once the processors are not enough, the scheduler should
reduce the processors assigned to the leaf nodes and adjust the processor assignment
to non-leaf nodes accordingly.

Now we briefly describe how the workload manager schedule the tasks of the
example job in Fig. 9.2 in a cloud with X machines. Each operator can be paral-
lelized and executed by multiple tasks. A — B — C or E — F can be executed as
a pipeline and D can run as long as long as the corresponding data from C and E is
available.

The job is scheduled as Fig. 9.3 in real time by the workload manager. We explain
how data driven approach will deal with potential I/O bound by utilizing pipeline
and overlapping I/O and CPU tasks. It is executed in following steps.

Step 1: identify the tasks for the operator A.

Step 2: select appropriate server nodes al, a2, a3 to execute tasks of A

Step 3: the nodes al, a2, a3 execute operator A’s tasks and can be viewed as a
single node “1”.

Step 4: find a set of servers to handle output from the node “1”. Say, we allocate
bl,b2,b3, b4.

Step 5: those 7 nodes can be viewed together as a node “2”.

Step 6: find a set of servers enough to handle the output from the node “2”.

Step 7: all the server in the left branch can be viewed as the node “3” and in
this node 3, all servers are busy since data inflow and processing power are
matched, thus, the resource utilization is high.

Step 8: construct node “4”, ““5” similar to the way we construct node “3”.

Step 9: then the nodes 3 and 5 can be combined to node “6”

Step 10: find a set of servers to handle the output of node “6”, which are
dl,d2,ds.



230 R. Lietal.

Note that we try to find a set of right “ratios” for servers between adjacent tiers
illustrated by the numerical nodes. Once we can find such set of ratios, for any num-
ber of machines, we know how to assign servers (or computing powers by sharing
servers) for each operator.

This approach ideally produces the best response time using a minimal number
of servers (most of time during the execution) since all machines are fully utilized.
Alternatively, we can use a lot of machines for operator A and F and then finish
B, C,E,D one by one. This naive approach is apparently inefficient if we can not
utilize all the machines for one of the operators.

To determine the best ratio between two tiers, we are aiming at balancing the
input/output, or the size of the middle result. In other words, we want to keep the
volume of waiting data blocks under a threshold 7. When there are more data blocks
than the threshold, we try to add more resources, so that more data blocks will be
processed. When number of data blocks is smaller than threshold, we could reduce
the number of processors. So finally the ratio can be reached around the threshold.
Apparently, for small value of T, the whole job will be pipelined faster.

9.3.5 Balancing Pipelined Operators

In a general work flow, we could eliminate intermediate results if we can extend the
execution of operators of a pipeline. If the computing resources are unlimited, we
can always assign new tasks to processors. In general, computing resources for one
job is limited. In such case, WLM has to assign tasks intelligently among limited
number of resources.

Figure 9.4 give a real example. Three operators has different processing speeds
for the same size of data. We cannot know exactly how fast data will be generated
before the job start so the resource allocation is best to be done in real time. We focus

Input queue 1 Input queue 2 Input queue 3
Output queue 1 Output queue 2 Output queue 3

Producer/Consumer(balancing Op1 & Op2)
Speed: 3:4
Resource: 4:3

Fig. 9.4 Pipeline Workers: 6(3:0p1,2:0p2,1:Shared)
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on the first two operators. Op1 and Op2 have a producer/consumer relationship, the
output data of Opl will be passed to Op2. After initial execution, WLM finds that
the computing power should be configured into 4:3 for two operators to match the
input/output. If we have 7 equivalent servers, this can be fulfilled easily. Suppose
we have only 6 equivalent servers, we propose following shared-worker scheme: we
assign 3 workers dedicated for Op1’s task, 2 workers for Op2’s task, the remaining
for tasks from both workers (interleaving). The balancing target here is to reduce the
size of the intermediate result and shared-worker can execute the unbalanced tasks
in real time.

To summarize, our data driven model will monitor input/output queues between
neighboring operators and adjust the task assignment. If resources are limited we
can request new workers or slow down the source input. The ratio in pipeline can be
changed because of variation in the selectivity, our scheduling can quickly response
to such change.

9.3.6 Balancing Tiers

Next, we show how to select servers to balance the workload between adjacent tiers.
Because it is data driven, the easiest way is — assign one server or minimum number
of servers for I/O related sub-jobs (say, operators A and B) — then we can figure out
how many servers should be assigned to B,C,E,D respectively handle output from
A and F respectively. The idea is something like: assign one I/O node; traverse from
the leaf node to top until reach a join node at the join node, multiple branches need
to be “synchronized” across all branches; to do so, the servers need to be added to
traverse down the branches; after all branches at the join node are in sync (balanced),
then continue to traverse upward; after we reach to the top, we have determine the
ratios between servers between adjacent tiers. We can multiple a number (i.e. 2, 3,
4, ....) to the numbers of servers in each node and expand the execution graph.

We mention “ratio” for numerical nodes in the example. The actual ratio will
change during run time and change from one run to another. The ratio may not
mean anything unless all computation units are “normalized”.

The ratio gives us a reference as how to allocation cpu power to different sub-job
so that the workload can be balanced.

9.3.7 Scheduling Multiple Jobs

To schedule multiple jobs, we first map a certain number of processors for each job,
which can be considered as its individual processor pool. For each job, the workload
manager will only assign its task to the machines in its own pool. This processor/job
mapping is done by WLM when a job is initialized. If resource is limited, we allow
a processor to be shared by multiple jobs since some of processor may be powerful.
Figure 9.5 shows an example of two jobs. Processor 2 is shared by both jobs.
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Fig. 9.5 Multiple jobs scheduling

The approach of initial worker pool is good for large scale cloud since we can
then easily control the resources used by each job. The pool can be dynamically
changed during run time to achieve a lot of scheduling purposes. For example, we
can simply suspend a job by cleaning its worker pool. We can speed up/slow down
the processing by adding/reducing processors in a job’s worker pool. The initial
pool size may not be suitable for all jobs. In real time, WLM may assign more/less
workers to the job which has more/less tasks to be scheduled. For example, if a job
is first executed by 10 machines to do I/O scan and the final step is done by a single
task on one machine, the unused processors can be released early to the process
other jobs with limited resources.

We list the internal design of WLM for scheduling a DAG job in Algorithm 1.
The WLM is run as a central scheduler. When a new job request is submitted, WLM
will first initialize the job and request an initial worker set of the job, then, WLM
will schedule the job. When a scheduled task finished, WLM will schedule other
tasks of its corresponding job.

9.4 Related Work

9.4.1 Parallel Databases

Parallelized processing on multi processors or shared-nothing architecture has been
shown to have a high degree of scale up and speed up (DeWitt & Gray, 1992). Some
of oldest systems include: GAMMA, Bubba, PRISMA/DB.

Parallelism can be done by using inter-operator parallelism (use pipeline or par-
allelize bushy-tree) and intra-operator parallelism (partition and parallelize inside a
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Algorithm 1 Workload Manager (WLM) for a single job

Require: Input: A job b of DAG with n operators and a set of m
processors.
Initialize status of all operators in DAG of job b.
Open the source input of leaf-level operators.
Request the worker set for b.
while The root operator of DAG is not complete do
Get an operator N which has tasks to be scheduled, and the
status of tasks.
Get the current worker set P of b and their working status.
Determine the processor/tasks mapping;
Assign available tasks to workers and request/release worker if
necessary.
9: end while
10: Job b is finished, release the work set and return.

S

relational operator). Great efforts has been put in parallelizing relational operators,
such as join algorithm (Schneider & DeWitt, 1989).

The optimization of parallelized query plan and scheduling has been widely stud-
ied (Hasan, 1995), such as scheduling pipelined query operators (Hasan & Motwani,
1994; Liu & Rundensteiner, 2005), static task scheduling and resource allocation
(Kwok & Ahmad, 1999; Garofalakis & Ioannidis, 1996; Lo, Chen, Ravishankar, &
Yu, 1993), load balancing (Bouganim, Florescu, & Valduriez, 1996) with skew han-
dling (DeWitt, Naughton, Schneider, & Seshadri, 1992), managing intra-operator
parallelism with multi-users (Mehta & DeWitt, 1995), dynamic query plan opti-
mization and migration according to running statistics (Antoshenkov, 1996). For the
dynamic query plan optimization, we can also prepare many different query plans
and select one in runtime (Hsiao, Chen, & Yu, 1994) or use parameters (Ioannidis,
Ng, Shim, & Sellis, 1992).

There also exist efforts on improving database performance on other computer
architectures, such as parallelizing the query processing in a multi-core environment
(Acker, Roth, & Bayer, 2008), database processing designed for simultaneous multi-
threading processors (Zhou, Cieslewicz, Ross, & Shah, 2005), etc.

In nowadays’ real internet applications, large data analysis is needed over
streaming of data. A lot of effort has been put to fulfil such query requirement
(Shah, Hellerstein, Chandrasekaran, & Franklin, 2003; Madden, Shah, Hellerstein,
& Raman, 2002; Zhu, Rundensteiner, & Heineman, 2004; Liu, Zhu, Jbantova,
Momberger, & Rundensteiner, 2005).

9.4.2 Data Processing in Cluster

Google’s MapReduce (Dean & Ghemawat, 2004) is deployed in a large cluster run-
ning Google Files System. In this system, a large data set is stored as multiple copies



234 R. Lietal.

of small standard blocks in different locations in the cluster. The MapReduce is a
standard programming model, executing two user provided functions for Map tasks
and Reduce tasks. Many data processing problems can be transformed into this pro-
gramming model, and the scheduling of tasks over the specifically designed system
improve the performance very well. But because the programming model limitation,
it’s not suitable for all kinds of jobs such as a relation join which takes two files as
input. Because of its usefulness and simplicity, many pioneering database systems
are beginning to integrate its functionality, including Aster Data> and GreenPlum.®
An open source implementation of MapReduce is provided by Hadoop.”

Dyrad (Isard, Budiu, Yu, Birrell, & Fetterly, 2007) implements a general-purpose
data parallel execution engine over a cluster. It uses low-level programming lan-
guage to represent a DAG of data flow. The static plan will be given to a runtime
executor to schedule over a cluster. However it has some drawbacks. First, the user
need to master a complex graph description language. It also requires the user to
know the detail of cluster to specify degree of parallelism (at least as a suggestion).
The optimization is through changing the shape of predetermined graph plan during
runtime. Currently it can only deal with one user task or query.

Recently, data driven workflow planning in cluster is proposed in Robinson
and DeWitt (2007) and Shankar and DeWitt (2007). Clustera (Davlid, DeWitt, &
Shankar, 2008) is a recently developed prototype of an integrated computation and
data management system. It has good extensibility and can execute computationally
intensive tasks, MapReduce task, as well as SQL queries in a parallel environment.
It will first compile any kind of task description into a DAG of concrete jobs, then
the job scheduler will optimize the execution in the cloud. It also adopts the idea of
using database for the cluster management problem. It has comparable performance
compared to Hadoop on the performance of MapReduce task and good scalability
for SQL like queries.

Inspired by MapReduce, it has been realized that a descriptive language for SQL
like data processing is needed for the parallel processing in a share-nothing envi-
ronment. Industries have proposed their idea, like Yahoo’s Pig Latin (Olston, Reed,
Srivastava, Kumar, & Tomkins, 2008) and Microsoft’s SCOPE (Ronnie Chaiken,
Jenkins, & Zhou, 2008).

9.5 Conclusion

Cloud computing denotes the latest trend in application development for parallel
computing on massive data volumes. It relies on clouds of servers to handle tasks
that used to be managed by individual server. We observe that current Hadoop (and
many others) require users to configure cloud infrastructures via programs and APIs

Shttp://www.asterdata.com/index.php.
6http://www. greenplum.com/.
7http://hadoop.apache.org/core/.
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and such configuration is fixed during the runtime. We argue that such ad hoc con-
figurations may result in less utilization and efficiency of the whole system. In this
chapter, we provide automated configuration of a cloud infrastructure adaptive to
runtime execution as well as extend supported set of operators. We evaluate the pro-
posed framework on both synthetic computational jobs. The future work includes
automated translation of SQL to Hadoop APIs (or extended APIs if required) in a
prototype system for further evaluation.
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Chapter 10
Enterprise Knowledge Clouds:
Architecture and Technologies

Kemal A. Delic and Jeff A. Riley

10.1 Introduction

This chapter outlines the architectural foundations of Enterprise Knowledge Clouds
(EKC) (Delic & Riley, 2009), describing the underlying technological fabrics and
then pointing at the key capabilities of the (hypothetical) intelligent enterprise oper-
ating in constantly evolving, dynamic market conditions. Our aim is to give readers
of this chapter a better understanding of knowledge cloud architectural aims and
practical insights into EKC technological components. Thanks to knowledge, the
enterprise will know more, will act better and react sooner in changing environment
conditions, ultimately improving its performance and enabling it to show better
behaviour and measurable improvements.

The Enterprise is an organisational structure which may take varying forms
in different domains and circumstances. For our purposes here, we consider that
the enterprise is an operating business employing 5000 or more people, operating
globally with revenues in excess of $1Billion, and supported by appropriate IT capa-
bilities and facilities. There is a long, ongoing debate over the value and impact of
IT use in business operations, but we can easily imagine what would happen if a
business enterprise suddenly finds itself without any IT systems.

Knowledge gives distinctive capabilities to living creatures, with humans being at
the top of the hierarchical tree of life. Tacit knowledge enables perception, reflection
and action as the basic features of any intelligent behaviour. Technology, on the
other hand, enables capturing and reuse of tacit knowledge in explicit form. Much of
what we know as ‘knowledge management’ is about transforming tacit knowledge
into explicit and vice-versa. Intuitively is clear that knowledge plays the key role
in each and every part of the business enterprise. Knowledge takes various forms,
has variable value and makes varying impact, and requires different technologies to
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deal with its entire, continues life cycle. It is ‘enterprise knowledge’ which makes
the difference in operational tasks (automation) and strategic situations (decision
making).

Cloud computing is an emerging architectural paradigm driven by the sharp drop
of technology costs followed by radically improved performance (commoditisation)
(ITU, 2010). Social changes and economic advances have created a huge number of
consumers and producers of various content artefacts (text, photo, music, video,
etc.) representing huge user clouds and large communities (in the order of 100s of
millions people). Thus we see cloud computing developing on an unprecedented
scale and dynamics on a global basis (CLOUDSCAPE, 2009).

Highly abstracted, company operations are described as the interplay between
people, machines and processes, providing either tangible goods or consumable ser-
vices (Delic, 2003). Depending upon the business context, one component might be
dominant over others, while each will contain something which we could label as
‘knowledge’. It is important to observe is that approximately 75% of the economic
activity in most advanced countries is created by service industries where knowledge
is the primary resource or ingredient, thus we have been hearing about ‘knowledge-
based economies’ for many years now. We may conclude that the services economy
is driven by the power of knowledge.

We postulate that Knowledge Clouds (KC) will enable the global spread of eco-
nomic growth, efficient delivery of services, smoother exchange and profitable trade
of goods and services.

10.2 Business Enterprise Organisation

The typical business enterprise is an hierarchical organisation which has certain
characteristics of military command-control layout with executives at the top of the
hierarchy (numbered in tens) senior managers and managers at the next level (num-
bered in hundreds) and employees at the base (numbered in thousands). Depending
upon the industry branch and regional specifics, it might be that certain functions are
global and others regional. This usually leads to a characteristics matrix organisation
which is marked by high complexity.

At the conceptual level, we can talk about key entities as Clients and Customers,
Partners and Suppliers, interconnected to the business enterprise via distribu-
tion channels and supply chains (Fig. 10.1). Internally, the enterprise will have
shared functions such as Human Resources, Finance, R&D Labs, IT, Sales and
Marketing synchronised with Production and Services. Specialised enterprise soft-
ware (e.g. CRM, ERP, SCM etc.) enables smooth operations of the enterprise and
represent typical enterprise software applications today. For large enterprises, those
are key systems requiring many years to perfect and require a large effort to oper-
ate. Each system encompasses knowledge embodied either as human expertise,
business processes, software algorithms or analytical models. Enterprise IT plays
a special, technological role for which KM will have distinctive value and lasting
importance.
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From the perspective of technology components, Enterprise IT can be abstracted
with the key components having their own operational indicators, such as dollars-
per-call for the help-desk or cents-per-event for processing, enabling management
and administrators to grasp inefficiencies and estimate the overall cost (Fig. 10.2).
The ultimate objective is to minimise the cost while maximising the efficiency of
the each IT unit, considering that data centres are machine intensives, help-desks are
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labour intensive, and operational centres and corporate networks are event intensive
units.

To enable synchronised and orchestrated changes, enterprise architecture cap-
tures the overall state of the enterprise business and IT infrastructure and provides
guidance expressed with a set of architecting principles.

Enterprise infrastructure used for business operations represents interconnecting,
mediation fabrics which improve operational behaviour captured and indicated via
key performance indicators. Removal of the IT fabrics will cripple business oper-
ations, demonstrating that today’s business operations are not imaginable without
the deployment of IT. In fact, the majority of businesses consider IT as a business-
critical component which must be cleverly architected and well designed as a highly
dependent part of the business.

10.3 Enterprise Architecture

Enterprise architecture is a strategic framework that captures the current state of
the enterprise business and supporting IT, and outlines an evolutionary path towards
the future state of the business and IT (Delic, 2002b). It is a very hard challenge
to provide synchronised development of business and IT in dynamic and unpre-
dictable market conditions. Thus, having a sound enterprise architecture that charts
evolutionary change over 3-5 years is an important, competitive advantage. In sim-
plistic terms, enterprise architecture is a model depicting the evolution of business,
infrastructure, applications and data landscapes over 3-5 years. Each artefact of the
enterprise architecture has a very high monetary value, a strong proprietary nature,
and a vital importance for the future of the enterprise.

In a simplistic fashion, these artefacts can be represented in an hierarchical man-
ner, implying the type of models appropriate for each layer, characteristic entities
and key metrics (Fig. 10.3). Enterprise architecture can be viewed as a global strate-
gic plan which will synchronise business evolution with IT development and ensure
that future needs are properly addressed. As such, enterprise architecture represents
the most valuable strategic planning item for enterprise executives and management:
business can plan underlying technology changes after observing forthcoming tech-
nology shifts (Zachman, 1999). Such technology changes will critically improve
or cripple business performance, and mature businesses should keep those plans
private, current and sound.

The expanded landscape shown in Fig. 10.4 indicates some characteristic opera-
tional figures for the very large, global business enterprise, and illustrates the scope,
scale and complexity of operations (Delic, 2002a). It is intuitively clear that such
a complex environment contains several points of inefficiency and structural weak-
ness which could be best dealt with via deployment of KM techniques. A more
developed enterprise landscape (e.g. Delic, Greene, & Kirsch, 2010) will also con-
tain data points, indicate the dynamics and spread of data flows, and show the key
technological, business and market indicators.
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As an example, for an enterprise business to efficiently handle in the order of
100 million calls per year, it should capture and deploy knowledge about callers,
encountered problems and solution procedures. Similarly, to configure, manage and
maintain in the order of 40,000 network devices, an enterprise business needs deep
and reliable knowledge about network topology, fault behaviours and overall traf-
fic flows. For each domain, knowledge will have different capture paradigms and
technology, and will have a different impact on internal IT performances and cost.

10.4 Enterprise Knowledge Management

Enterprises as large, distributed and complex entities have several points of inter-
operations with their environment which could be improved via deployment of KM
applications. Knowledge about clients and customers will improve financial results
and customer satisfaction. Knowing partners and suppliers better will help improve
cooperation. Internal systems may help harvest employees ideas which then might
be transformed into valuable intellectual property. As previously indicated, the IT
domain is especially suitable for the deployment of KM systems, and this is an
area in which the authors both have many years experience. We describe in detail
three examples of KM deployment for internal IT operations, decision support, and
knowledge harvesting.

An example of KM deployment in the IT domain is in the use of various knowl-
edge repositories and systems to resolve a range of IT problems (Delic et al., 2010).
Following a problem event from the IT infrastructure we see from Fig. 10.5 that
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(1) problem recognition software will search a knowledge base containing problem
solving knowledge, and if it recognises and identifies the problem it will deploy
the solution found in the knowledge base; otherwise, (2) a knowledgeable human
expert will be identified and, after deploying the diagnostic procedure, knowledge
will be forwarded into automatic problem solving layer. For more complex, intri-
cate or inter-dependent problems, (3) a group of human experts will be engaged to
use knowledge captured in simulation analytics to resolve the problem via group
decision making.

As millions of problems are solved daily, it is clear that the cost and speed of
problem resolution are important parameters that illustrate the value of KM deploy-
ment for IT operations. At the very high level of abstraction, we see transformation
of the raw data into information and then into knowledge and problem-solving acts,
having measurable business impact and monetary value. It is important to note that
KM techniques serve important roles in support and services, and that technologies
deployed mainly originated from the field of Artificial Intelligence.

Another example of knowledge deployment is in decision support systems for
enterprise operations, based on Enterprise Management Analytics (Casati et al.,
2004; Cerri et al., 2008). We depict a layered IT architecture serving the business
to orchestrate operations with clients and customers while being supported by sup-
pliers and partners (Fig. 10.6). Those layers have distinctive architectures dictated
by the general intent, so that all events from the instrumentation layer are served in
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timely manner and never missed; transactions in the integration layer are captured
and never lost; and analytics in the interaction layer are always delivered and never
inaccurate.

Decision support is provided via portals embodied as business and IT cockpits
for executives, an operational workbench for managers, and working spaces for
employees. Knowledge is captured in enterprise management analytics. This is yet
another enterprise architecture landscape which combines the three-layers stratifica-
tion principle with analytics technologies to illustrate the current state of enterprise
KM systems for dependable and effective decision support.

Harvesting of employees’ ideas represents an important activity as it may spawn
the seeds of valuable new processes, inventive technologies, or innovative solutions.
After initial triage and assessment, ideas could be suitable for transformation into
valuable intellectual property — as patents for example. Figure 10.7 depicts a hypo-
thetical example, illustrating that a large brainstorming exercise, or grand challenge,
can create big idea clouds which could be harvested, transformed and potentially
monetised. It is an illustration of KM deployed for innovation on a mass scale,
where emerging cloud computing facilities may enable rescaling of these processes
by orders of magnitude (Delic & Fulgham, 2004).
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Figure 10.7 depicts, in stylised form, that (1) ideas are created, spawned and
enriched; (2) the ideas are then organized and ordered by potential value or interest-
ingness; then (3) the ideas are compared and measured against similar ideas in patent
repositories, document libraries or internet documents; and finally, (4) the ideas are
either refined and formalised or re-injected into yet another round of brainstorming.

Some large companies have arranged intensive sessions or grand challenges cre-
ating more than 100,000 ideas in a very short period of time — so the next possible
challenge will be in the automation of processes related to triage, evaluation, val-
uation and formalization of the assessments of ideas. Due to this automation, the
amount of innovation knowledge captured will be extremely large, and the power
of scope and scale of such a system and its potential monetary value can only be
imagined.

10.5 Enterprise Knowledge Architecture

Contemporary enterprise applications usually reside in data centres and have a
typical stacked architecture (Fig. 10.8). Web servers manage interactions, deliver
content and capture traces (front-end system) for enterprise applications residing
in application servers (middleware). It is common for the databases capture events,
transactions and analytics in the back-end system. To deal with high load and tran-
sient peaks, load-balancers are installed on the front-end and SAN (Storage Area
Networks) for archiving in the back-end.
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Fig. 10.8 Enterprise knowledge management stack

The abstracted enterprise knowledge management system can also be shown with
a stacked architecture (Fig. 10.8), and here we recognise three characteristic layers:
front-end, middle/application layer and back-end. We indicate a whole slew of tech-
nologies (middle/application layer) originating from Artificial Intelligence research
which represent the essence of many KM applications (Cannataro & Talia, 2003;
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Delic, Riley, Bartolini, & Salihbegovic, 2007). Knowledge is delivered via various
types of portals, either to registered internal or external users or anonymous web
consumers. It is typically the case that knowledge users can become knowledge
producers via various discussion forums. Another channel of delivery and exchange
of knowledge is via machine-to-machine exchanges.

The knowledge (idea) harvesting system described previously can be imple-
mented as an enterprise application with three layers in which content (as exter-
nalised knowledge) is being processed and stored within three logical knowledge
layers. The Operational Knowledge Store provides rapid access; the Knowledge
Mart is an intermediate knowledge repository; and archived knowledge is stored in
the Knowledge Warehouse.

We should stress that all conceptual drawings show an architecture which can
be materialised with different logical and physical architectures, depending on the
deployment domain and choice of key technologies — KM technologies such as
content management, enterprise search, delivery portals, discussion forums as key
enterprise components glued together via Service Oriented Architecture (SOA) into
service delivery fabrics.

10.6 Enterprise Computing Clouds

Cloud computing is the next evolutionary step in the distributed computing field
enabled by:

e radical price/performance improvement leading to commoditization

e technology advances with multi-core and energy-aware chip designs

e architectural interplay of warehouse-scale computing and huge number of intel-
ligent edge devices

Large business enterprises have strong incentives to consider their architecture
plans in light of developments in cloud computing (Sun Microsystems, 2009).

A possible instance of cloud computing serving billions of users can be depicted
as the next wave internet in which the number of devices, gadgets and things can
easily surpass 10 billion items (Delic, 2005; Delic & Walker, 2008) (Fig. 10.9).
It will be served by strategically placed data centres federated into grids via effi-
cient communication fabrics. In data centres clusters of various sizes (hundred to
thousands of machines) will be dynamically allocated to handle varying enterprise
workloads. At the chip level, programming of multi-core will become the principal
preoccupation of designers aiming at energy efficient designs.

The entire chain from the chips, via racks, clusters and data centres should be
designed with cloud computing in mind. The same should apply for the software
design. At the level of large aggregation of grids, entirely new economics and legal
concerns can govern traffic flows, data storage and choice of application execution
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location. This represents a wide number of unresolved issues and particularly hard
challenges.

The business reality of the enterprise and constantly changing market conditions
will dictate specific choices of the Enterprise Knowledge Clouds, which we describe
in the next section.

10.7 Enterprise Knowledge Clouds

Taking into account the current organisational layout of the typical enterprise, we
can outline a generic architecture for enterprise clouds. This generic architecture has
three principal architectural layers: private, partner and public cloud. We postulate
that knowledge management techniques will be appropriately spread over the each
and every enterprise cloud. This natural separation is dictated by the required capa-
bility of each cloud: security and privacy is a must for the private cloud; availability
and reliability is a precondition for the partner cloud; and rescaling and coverage
is important for the public cloud (Fig. 10.10). These requirements will be not only
guiding principles but also design criteria for enterprise clouds.

We can easily imagine that Finance, Human Resources and R&D Labs will
be the prime candidates for the private enterprise KM cloud. The Supply Chain
and Delivery organisations will naturally fall into the partner cloud; while Sales,
Marketing, Public Relations and Publicity would be natural fits for the public cloud.
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The private, partner and public enterprise clouds should have the facility to inter-
operate and exchange data, information and knowledge on a regular and intensive
basis. The choice of technologies for the enterprise clouds will be critical, and the
emergence of suitable standards is keenly anticipated.

It is not expected that the large enterprises will switch overnight onto cloud
computing fabrics, but we expect they will start to gradually deploy cloud-based
applications for a few, carefully selected domains. Each previous wave of enterprise
technologies has gone through the profotype-test-deploy cycle, and cloud technol-
ogy will not be different. It is also during this time that choices of key cloud
technologies respecting the ultimate capability for each cloud type will be made.

Monitoring, measurement and calculation of key performance parameters for
each enterprise cloud should be undertaken in order to measure the impact of the
new cloud architecture on enterprise performance, and justify investment in the new
technologies.

10.8 Enterprise Knowledge Cloud Technologies

Figure 10.11 depicts an abstracted cloud architecture and shows three principal
groups of technologies that provide virtualisation, automation and scheduling.
Virtualisation (of hardware and software) will provide better use of resources;
Automation will lower support costs and improve dependability of the clouds; and
Scheduling will enable economics-based reasoning about the use of resources and
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dispatching of the enterprise workloads. Finally, we assume that the innovation in
communication part of the clouds should lead to breakthrough improvements.

All these technologies could be categorised as open-source, proprietary or
hybrid. It is beyond the scope of this discussion to delve deeper into detail, but
we point out that these choices are critical for real-world deployment. Intuitively
we would suggest open-source technology for the public cloud, proprietary for the
private cloud, and hybrid for the partner cloud, but we also recognise that this is
a difficult problem and once put into a real-world application context, the choices
might not be right nor will alternatives be obvious.

The choice of technologies for enterprise clouds will be the difference between
success and failure. We expect that the private, public and partner clouds will inter-
operate, so the choice of technology should take into account existing or emerging
standards which will enable future flows among clouds. All interested parties in
this domain have reasons to participate in establishing standards: some self-serving,
some altruistic. We expect to see some robust negotiations between the “proprietary”
and “open” camps.

Looking back over the short history of cloud computing, we can identify some
early platforms on which a very high number of users have developed and deployed
a large number of applications. Thus we expect that the leading vendors will try to
create very large scale platforms that will attract millions of developers. Platform
development usually means the choice of programming language and associated
framework. This has advantages for developers and consumers, but also for the
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vendors in that it tends to lock developers into a single platform. Interoperability
of platforms will pose some of the greatest challenges for cloud computing in the
future.

Ongoing technology developments are especially noticeable, and sometimes tar-
geted, by small companies which aim to exit the business via a sale to an established,
global vendor. We have seen this happen already with some small companies having
been sold for (up to) several hundreds of million of dollars. This is an area for future
and exciting developments.

Automation, especially of data centres, will represent the most intricate part of
the cloud, as it must address multiple engineering issues and big challenges in which
the ultimate goal is multi-objective: the maximisation of utilisation and monetary
benefits, and the minimisation of energy cost. All this is to be done whilst guaran-
teeing dependability and achieving performance objectives. We see here a long road
of future research, engineering development and technology innovation (Armbrust
et al., 2009). All this will be a critical path to see enterprises running the majority
of their business in the cloud.

10.9 Conclusion: Future Intelligent Enterprise

If we take a longer perspective look into past technology developments and busi-
ness evolution, we observe some distinct phases characterised by a single word to
describe an entire technology epoch (Delic & Dayal, 2002). For the automotive
industry automation of production was the key technological advance; integra-
tion for the aviation industry and aircraft production; optimisation for e-commerce;
and for the forthcoming service industry, it is adaptation (Delic & Greene, 2006)
(Fig. 10.12).

Adaptive behaviour is a characteristic of living systems, while businesses are
hybrid systems combining people, technology and processes into orchestrated
whole. We believe that the injection of technologies will improve interconnec-
tivity, reduce latencies and increase speeds while improving the problem solving
capabilities based on a higher ‘knowledge density’. We call such an enterprise an
Intelligent Enterprise to denote improved behaviour and the ability to adapt and
survive in changing circumstances. While we do not (yet) compare this artefact to
intelligent living creatures, the analogy is clear.

We postulate that the synergy among big data, big mobile crowds and large
infrastructures will lead to unprecedented improvements in the key indicators above
(Fig. 10.12).

The emerging cloud computing paradigm embodied in useful applications for the
enterprise knowledge management offers:

e radical cost reduction
e a great ability to scale
e much improved agility
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As such, it might be a good showcase for cloud computing success. In prac-
tical terms, enterprise architecture will evolve towards cloud architecture, and all
architectural components and layers will be impacted and adapted accordingly.

New technologies will enable the next wave of business models, impact market
developments, and see the rise of much changed business enterprise.
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