ADDRESSING THE NETWORK - IPV4

OBJECTIVES

- Explain the structure IP addressing and demonstrate the ability to convert between 8-bit binary and decimal numbers.
- Given an IPv4 address, classify by type and describe how it is used in the network
- Explain how addresses are assigned to networks by ISPs and within networks by administrators
- Determine the network portion of the host address and explain the role of the subnet mask in dividing networks.
- Given IPv4 addressing information and design criteria, calculate the appropriate addressing components.
- Use common testing utilities to verify and test network connectivity and operational status of the IP protocol stack on a host.

IP ADDRESSING STRUCTURE

- Describe the dotted decimal structure of a binary IP address and label its parts

Numbering Systems

BINARY NUMBER SYSTEM

BINARY AND IPV4 ADDRESSES

- Binary numbering system consists of Is and 0 s , called bits
- Decimal numbering system consists of digits 0 through 9
- Hosts, servers, and network equipment using binary addressing to identify each other.
- Each address is made up of a string of 32 bits, divided into four sections called octets.
- Each octet contains 8 bits (or I byte) separated by a dot.
- For ease of use by people, this dotted notation is converted to dotted decimal.

BINARY NUMBER SYSTEM

BINARY POSITIONAL NOTATION (CONT.)

The binary positional notation system operates as shown in the tables below.

Radix	$\mathbf{2}$							
Position in Number	7	6	5	4	3	2	1	0
Calculate	$\left(2^{7}\right)$	$\left(2^{6}\right)$	$\left(2^{5}\right)$	$\left(2^{4}\right)$	$\left(2^{3}\right)$	$\left(2^{2}\right)$	$\left(2^{1}\right)$	$\left(2^{0}\right)$
Position Value	128	64	32	16	8	4	2	1

Positional Value	128	64	32	16	8	4	2	1
Binary Number (I 1000000)	I	I	0	0	0	0	0	0
Calculate	1×128	1×64	0×32	0×16	0×8	0×4	0×2	0×1
Add Them Up \ldots	128	+64	+0	+0	+0	+0	+0	+0
Result				192				

BINARY NUMBER SYSTEM

CONVERT BINARYTO DECIMAL

Convert 11000000.10101000.00001011.00001010 to decimal.

Positional Value	128	64	32	16	8	4	2	I
Binary Number (11000000)	I	I	0	0	0	0	0	0
Calculate	1×128	Ix64	0×32	0×16	0x8	0×4	0×2	0xI
Add Them Up...	128	+ 64	$+0$	+ 0	+ 0	$+0$	$+0$	+ 0
Binary Number (10101000)	I	0	I	0	I	0	0	0
Calculate	1×128	0×64	1 $\times 32$	0×16	1x8	0×4	0×2	0×1
Add Them Up...	128	+ 0	+ 32	+ 0	+ 8	+ 0	+ 0	+ 0
Binary Number (00001011)	0	0	0	0	I	0	I	I
Calculate	0×128	0×64	0×32	0×16	1×8	0×4	1×2	$\|x\|$
Add Them Up...	0	+ 0	+ 0	+ 0	+ 8	+ 0	$+2$	+ 1
Binary Number (00001010)	0	0	0	0	I	0	I	0
Calculate	0×128	0×64	0×32	0×16	Ix8	0×4	1x2	0xI
Add Them Up...	0	+ 0	+ 0	+ 0	+ 8	+ 0	+ 2	+ 0

[^0]10

BINARY NUMBER SYSTEM

DECIMALTO BINARY CONVERSION
The binary positional value table is useful in converting a dotted decimal IPv4 address to binary.

- Start in the 128 position (the most significant bit). Is the decimal number of the octet (n) equal to or greater than 128 ?
- If no, record a binary 0 in the 128 positional value and move to the 64 positional value.
- If yes, record a binary 1 in the 128 positional value, subtract 128 from the decimal number, and move to the 64 positional value.
- Repeat these steps through the 1 positional value.

BINARY NUMBER SYSTEM

DECIMALTO BINARY CONVERSION EXAMPLE

- Convert decimal 168 to binary

Is $168>128 ?$

- Yes, enter 1 in 128 position and subtract 128 (168-128=40)

Is $40>64$?

- No, enter 0 in 64 position and move on

Is $40>32$?

- Yes, enter 1 in 32 position and subtract 32 (40-32=8)

Is $8>16$?

- No, enter 0 in 16 position and move on

Is $8>8$?

- Equal. Enter 1 in 8 position and subtract 8 (8-8=0)

No values left. Enter 0 in remaining binary positions

128	64	32	16	8	4	2	1
1	0	1	0	1	0	0	0

Decimal 168 is written as 10101000 in binary

BINARY NUMBER SYSTEM
 IPV4 ADDRESSES

- Routers and computers only understand binary, while humans work in decimal. It is important for you to gain a thorough understanding of these two numbering systems and how they are used in networking.

HEXADECIMAL NUMBER SYSTEM

CISCO

HEXADECIMAL NUMBER SYSTEM

HEXADECIMAL AND IPV6 ADDRESSES

- To understand IPv6 addresses, you must be able to convert hexadecimal to decimal and vice versa.
- Hexadecimal is a base sixteen numbering system, using the digits 0 through 9 and letters A to F .
- It is easier to express a value as a single hexadecimal digit than as four binary bit.
- Hexadecimal is used to represent IPv6 addresses and MAC

Decimal
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Hexadecimal

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

HEXADECIMAL NUMBER SYSTEM HEXADECIMAL AND IPV6 ADDRESSES (CONT.)

- IPv6 addresses are 128 bits in length. Every 4 bits is represented by a single hexadecimal digit. That makes the IPv6 address a total of 32 hexadecimal values.
- The figure shows the preferred method of writing out an IPv6 address, with each X representing four hexadecimal values.
- Each four hexadecimal character group is referred to as a hextet.

HEXADECIMAL NUMBER SYSTEM

DECIMAL TO HEXADECIMAL CONVERSIONS

Follow the steps listed to convert decimal numbers to hexadecimal values:

- Convert the decimal number to 8 -bit binary strings.
- Divide the binary strings in groups of four starting from the rightmost position.
- Convert each four binary numbers into their equivalent hexadecimal digit.

For example, 168 converted into hex using the three-step process.

- 168 in binary is 10101000 .
- 10101000 in two groups of four binary digits is 1010 and 1000 .
- 1010 is hex A and 1000 is hex 8 , so 168 is A8 in hexadecimal.

CLASSIFY AND DEFINE IPV4 ADDRESSES

- Name the three types of communication in the Network Layer and describe the characteristics of each type

CLASSIFY AND DEFINE IPV4 ADDRESSES

- Identify the address ranges reserved for these special purposes in the IPv4 protocol

Reserved IPv4 Address Ranges

Type of Address	Usage	Reserved IPv4 Address Range	RFC
Host Address	used for IPv4 hosts	0.0.0.0 to 223.255.255.255	790
Multicast Addresses	used for multicast groups on a local network	224.0.0.0 to 239.255.255.255	1700
Experimental Addresses	- used for research or experimentation - cannot currently be used for hosts in IPv4 networks	240.0.0.0 to 255.255.255.254	$\begin{aligned} & 1700 \\ & 3330 \end{aligned}$

CLASSIFY AND DEFINE IPV4 ADDRESSES

- Identify the historic method for assigning addresses and the issues associated with the method

IP Address Classes					
Address Class	1st octet range (decimal)	1st octet bits (green bits do not change)	Network(N) and Host(H) parts of address	Default subnet mask (decimal and binary)	Number of possible networks and hosts per network
A	1-127**	$\begin{aligned} & 00000000- \\ & 0111111 \end{aligned}$	N.H.H.H	255.0.0.0	$\begin{aligned} & 128 \text { nets }\left(2^{\wedge} 7\right) \\ & 16,777,214 \text { hosts per } \\ & \text { net }\left(2^{\wedge} 24-2\right) \end{aligned}$
B	128-191	$\begin{aligned} & 10000000- \\ & 1011111 \end{aligned}$	N.N.H.H	255.255.0.0	16,384 nets (2^14) 65,534 hosts per net (2^16-2)
C	192-223	$\begin{aligned} & 11000000- \\ & 11011111 \end{aligned}$	N.N.N.H	255.255.255.0	2,097,150 nets ($\mathbf{2}^{\wedge} \mathbf{2 1)}$ 254 hosts per net (2^8-2)
D	224-239	$\begin{aligned} & 11100000- \\ & 11101111 \end{aligned}$	NA (multicast)		
E	240-255	$\begin{aligned} & 11110000- \\ & 11111111 \end{aligned}$	NA (experimental)		

** All zeros (0) and all ones (1) are invalid hosts addresses.

PRIVATE ADDRESSES

The private address blocks are:
10.0.0.0 to 10.255.255.255 (10.0.0.0 /8)
172.16.0.0 to 172.31.255.255 (172.16.0.0/12)
192.168.0.0 to 192.168.255.255 (192.168.0.0/16)

ASSIGNING ADDRESSES

- Explain the importance of using a structured process to assign IP addresses to hosts and the implications for choosing private vs. public addresses

IPv4 Address Planning and Assignment
Public and Private Addresses

ASSIGNING ADDRESSES

- Explain which types of addresses should be assigned to devices other than end user devices

Devices IP Address Ranges

Use	First Address	Last Address	Summary Address
Network Address	$172.16 . x .0$	$\ldots .$.	
172.16.x.0 $/ 25$			
User hosts (DHCP pool)	$172.16 . x .1$	$172.16 . x .127$	
Servers	$172.16 . x .128$	$172.16 . x .191$	$172.16 . x .128 / 26$
Peripherals	$172.16 . x .192$	$172.16 . x .223$	$172.16 . x .192 / 27$
Networking devices	$172.16 . x .224$	$172.16 . x .253$	
Router (gateway)	$172.16 . x .254$	$\ldots . .$.	$172.16 . x .224 / 27$
Broadcast	$172.16 . x .255$	$\ldots .$.	

ASSIGNING ADDRESSES

- Describe the process for requesting IPv4 public addresses, the role ISPs play in the process, and the role of the regional agencies that manage IP address registries

Entities that Oversee IP Address Allocation

SUBNETTING

Subnetting allows for creating multiple logical networks from a single address block. Since we use a router to connect these networks together, each interface on a router must have a unique network ID.

CALCULATING ADDRESSES

- Use the subnet mask to divide a network into smaller networks and describe the implications of dividing networks for network planners

CALCULATING ADDRESSES

- Extract network addresses from host addresses using the subnet mask

CALCULATING ADDRESSES

- Calculate the number of hosts in a network range given an address and subnet mask

CALCULATING ADDRESSES

- Given a diagram of a multi-layered network, address range, number of hosts in each network and the ranges for each network, create a network scheme that assigns addressing ranges to each network

Given the network address and the subnet mask, define the range of hosts, the broadcast address, and the next network address.

Network Address in decimal	10	187	0	0
Subnet Mask in decimal	255	255	224	0
Network address in binary	00001010	10111011	00000000	00000000
Subnet Mask in binary	1111111	11111111	11100000	00000000
First Usable Host IP Address in decimal	1 1st octet	2nd octet	3rd octet	4th octet
Last Usable Host IP Address in decimal	1st octet	2nd octet	3rd octet	4th octet
Broadcast Address in decimal	1st octet	2nd octet	3rd octet	4th octet
Next Network Address in decimal	1st octet	2nd octet	3rd octet	4th octet

TESTING THE NETWORK LAYER

- Describe the general purpose of the ping command, trace the steps of its operation in a network, and use the ping command to determine if the IP protocol is operational on a local host

TESTING THE NETWORK LAYER

- Use tracert/traceroute to observe the path between two devices as they communicate and trace the steps of tracert/traceroute's operation

Thank You

[^0]: 192.168.11.10

