
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 5: CPU Scheduling

5.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 5: CPU Scheduling

● Basic Concepts

● Scheduling Criteria

● Scheduling Algorithms

● Examples

5.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

● To introduce CPU scheduling, which is the basis for
multiprogrammed operating systems

● To describe various CPU-scheduling algorithms

● To discuss evaluation criteria for selecting a CPU-scheduling
algorithm for a particular system

5.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Basic Concepts

● Maximum CPU utilization obtained with multiprogramming

● Continuous Cycle :

● one process has to wait (I/O)

● Operating system takes the CPU away

● Give CPU to another process

● This pattern continues

● CPU–I/O Burst Cycle – Process execution consists of a cycle of
CPU execution and I/O wait

5.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

 CPU and I/O Burst Cycle

● Almost all processes alternate between two states in a continuing cycle,
as shown in Figure below :

● A CPU burst of performing calculations, and

● An I/O burst, waiting for data transfer in or out of the system.

● Processes alternate back and forth between this two states.

5.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Alternating Sequence of CPU and
I/O Bursts

5.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

CPU Scheduler
● Selects from the processes in ready queue, and allocates the CPU to one of them

● FIFO queue

● Priority queue

● Tree

● Unordered linked-list

● CPU scheduling decisions may take place when a process:

1.Switches from running to waiting state (I/O request)

2.Switches from running to ready state (e.g. when interrupt occurs)

3.Switches from waiting to ready (e.g. at completion of I/O)

4. Terminates

● Scheduling under 1 and 4 is nonpreemptive

● All other scheduling is preemptive

● Consider access to shared data

● Consider preemption while in kernel mode

● Consider interrupts occurring during crucial OS activities

5.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Scheduling Criteria

● CPU utilization – keep the CPU as busy as possible

● Throughput – # of processes that complete their execution per time unit

● Turnaround time
– amount of time to execute a particular process
-- the interval from the time of submission of a process to the time of the
completion.
-- sum of the periods spent waiting to get into memory, waiting in the ready
queue, executing on the CPU, doing I/O

● Waiting time – amount of time a process has been waiting in the ready queue

● Response time – amount of time it takes from when a request was submitted
until the first response is produced, not output (for time-sharing environment)

5.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Scheduling Algorithm Optimization Criteria

● Max CPU utilization

● Max throughput

● Min turnaround time

● Min waiting time

● Min response time

5.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

First-Come, First-Served (FCFS) Scheduling
Process Burst Time
 P1 24
 P2 3
 P3 3

● Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

P1 P2 P3

24 27 300

● Waiting time for P1 = 0; P2 = 24; P3 = 27
● Average waiting time: (0 + 24 + 27)/3 = 17
● Turnaround time P1 = 24; P2 = 27; P3 = 30

5.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

 P2 , P3 , P1

● The Gantt chart for the schedule is:

P1P3P2

63 300

Waiting time for P1 = 6; P2 = 0; P3 = 3
Average waiting time: (6 + 0 + 3)/3 = 3
Much better than previous case
Convoy effect - short process behind long process

Consider one CPU-bound and many I/O-bound processes

5.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

FCFS Scheduling (Cont.)

Convoy Effect :

many I/O bound process and one CPU bound process

CPU bound process I/O bound process Effect
I/O device I/O queue CPU site idle

CPU processing Ready queue I/O site idle

5.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Shortest-Job-First (SJF) Scheduling

● Associate with each process the length of its next CPU burst. Use these
lengths to schedule the process with the shortest time

● Two schemes:

● Non-preemptive – once CPU given to the process it cannot be preempted
until completes its CPU burst

● preemptive – if a new process arrives with CPU burst length less than
remaining time of current executing process, preempt. This scheme is
know as the
Shortest-Remaining-Time-First (SRTF)

● SJF is optimal – gives minimum average waiting time for a given set of
processes

5.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of SJF

 ProcessArriva l Time Burst Time

 P1 0.06

 P2 2.08

 P3 4.07

 P4 5.03

● SJF scheduling chart

P4
P3P1

3 160 9

P2

24

Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

5.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Arrival Time Burst Time

P1 0.0 7

 P22.0 4

 P34.0 1

 P45.0 4

● SJF (non-preemptive)

Example of Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12

Average waiting time = (0 + 6 + 3 + 7)/4 = 4

5.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Preemptive SJF

Process Arrival Time Burst Time

P1 0.0 7

 P22.0 4

 P34.0 1

 P45.0 4

● SJF (preemptive)

● Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

5.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Shortest-remaining-time-first

● Now we add the concepts of varying arrival times and preemption to the analysis

 ProcessA arri Arrival TimeT Burst Time

 P1 0 8

 P2 1 4

 P3 2 9

 P4 3 5

● Preemptive SJF Gantt Chart

● Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 msec

P1
P1P2

1 170 10

P3

265

P4

5.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

● Exponential average

Page – 221/946

5.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Priority Scheduling
● A priority number (integer) is associated with each process

● The CPU is allocated to the process with the highest priority (smallest integer ≡ highest priority)

● Preemptive

● Nonpreemptive

● SJF is priority scheduling where priority is the inverse of predicted next CPU burst time

● Priority can be defined either internally or externally.

● Factors for internal priority assignment:

4 Time limit, memory requirements, the number or open files etc.

● Factors for external priority assignment:

4 Importance of the process, the type and amount of funds of funds being paid for computer use,
department sponsoring works etc.

5.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Priority Scheduling

 ProcessA arri Burst TimeT Priority

 P1 10 3

 P2 1 1

 P3 2 4

 P4 1 5

P5 5 2

● Priority scheduling Gantt Chart

P2 P3P5

1 180 16

P4

196

P1

Average waiting time = 8.2 msec

5.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Priority Scheduling

● Problem ≡ Starvation – low priority processes may never execute

● Solution ≡ Aging – as time progresses increase the priority of the process

5.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Round Robin (RR)

● Each process gets a small unit of CPU time (time quantum q), usually 10-100 milliseconds. After this
time has elapsed, the process is preempted and added to the end of the ready queue.

● If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the
CPU time in chunks of at most q time units at once. No process waits more than (n-1)q time units.

● Timer interrupts every quantum to schedule next process

● Performance

● q large ⇒ FCFS

● q small ⇒ q must be large with respect to context switch, otherwise overhead is too high

5.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of RR with Time Quantum = 4

Process Burst Time
P1 24
 P2 3
 P3 3

● The Gantt chart is:

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

• Average waiting time is 17 / 3 = 5.66 milisecond
• Typically, higher average turnaround than SJF, but better response
• quantum should be large compared to context switch time
• Quantum usually 10ms to 100ms, context switch < 10 usec

5.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Time Quantum and Context Switch Time

5.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Turnaround Time Varies With
The Time Quantum

80% of CPU bursts should
be shorter than quantum

5.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Queue
● Another class of scheduling algorithm needs- in which processes are classified into different groups, e.g.:

● foreground (interactive) processes

● background (batch) processes

● They have different response time requirements-so different scheduling needs.

● Foreground processes may have priority over background processes.

● A multilevel queue-scheduling algorithm partitions the ready queue into several separate queues-we can
see it in the figure of next slide:-

● Each queue has its own scheduling algorithm:

● Foreground queue scheduled by – RR algorithm

● Background queue scheduled by – FCFS algorithm

● Scheduling must be done between the queues:

● Fixed priority preemptive scheduling; (i.e., serve all from foreground then from background).
Possibility of starvation.

● Time slice – each queue gets a certain amount of CPU time which it can schedule amongst its
processes; i.e., foreground queue can be given 80% of the CPU time for RR-scheduling among its
processes, while 20% to background in FCFS manner.

5.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Queue Scheduling

5.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Feedback Queue scheduling
● Processes do not move from one queue to the other----But

● Multilevel Feedback Queue scheduling, allows a process to move between queues.

● If a process uses too much CPU time, it will be moved to a lower priority queue.

● Similarly, a process that waits too long in a lower-priority queue may me moved to a higher-priority queue.

5.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Feedback Queue scheduling

● Multilevel-feedback-queue scheduler defined by the following parameters:

● number of queues

● scheduling algorithms for each queue

● method used to determine when to upgrade a process

● method used to determine when to demote a process

● method used to determine which queue a process will enter when that process needs service

5.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Multilevel Feedback Queue
● Three queues: (can see the figure in next slide)

● Q0 – RR with time quantum 8 milliseconds

● Q1 – RR time quantum 16 milliseconds

● Q2 – FCFS

● Scheduling

● A new job enters queue Q0 which is served for RR

4 When it gains CPU, job receives 8 milliseconds

4 If it does not finish in 8 milliseconds, job is moved to queue Q1

● At Q1 job is again served RR and receives 16 additional milliseconds

4 If it still does not complete, it is preempted and moved to queue Q2

5.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Feedback Queues

End of Chapter 5

