
6.1 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Chapter - 6

Process Synchronization

6.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Background

Processes can execute concurrently

Concurrent access to shared data may result in data

inconsistency

Maintaining data consistency requires mechanisms to

ensure the orderly execution of cooperating processes

6.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Process Synchronization: Objectives

Concept of process synchronization.

The critical-section problem, whose solutions can be used to

ensure the consistency of shared data

Software and hardware solutions of the critical-section problem

Classical process-synchronization problems

Tools that are used to solve process synchronization problems

6.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

What will Cover

Process Synchronization basic

Concepts

The Critical-Section Problem

Peterson’s Solution

Synchronization Hardware

Semaphores

Classic problems of synchronization

6.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Process Synchronization

Process Synchronization means sharing system resources

by processes in such a way that, Concurrent access to

shared data is handled thereby minimizing the chance of

inconsistent data. Maintaining data consistency demands

mechanisms to ensure synchronized execution of

cooperating processes.

Process Synchronization was introduced to handle

problems that arose while multiple process executions.

6.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Illustration….

Suppose that we wanted to provide a solution to the consumer-

producer problem that fills all the buffers(actually support bounded

buffer). We can do so by having an integer count that keeps track of

the number of full buffers. Initially, count is set to 0. It is incremented

by the producer after it produces a new buffer and is decremented by

the consumer after it consumes a buffer.

6.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Producer

while (true)

{

/* produce an item and put in nextProduced

while (count == BUFFER_SIZE)

; // do nothing

buffer [in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

count++;

}

6.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Consumer

while (1)

{

while (count == 0)

; // do nothing

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

count--;

/* consume the item in nextConsumed

}

6.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Race Condition

count++ could be implemented as

register1 = count
register1 = register1 + 1
count = register1

count-- could be implemented as

register2 = count
register2 = register2 - 1
count = register2

Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = count {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = count {register2 = 5}
S3: consumer execute register2 = register2 - 1 {register2 = 4}
S4: producer execute count = register1 {count = 6 }
S5: consumer execute count = register2 {count = 4}

6.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Race Condition

A situation where several processes access and

manipulate the same data concurrently, and the outcome of

the execution depends on the particular order in which the

access takes place, is called race condition.

To guard against the race condition above, we need to

ensure that only one process at a time can be

manipulating the variable counter. To make such a

guarantee , we require that the processes be

synchronized in some way.

6.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Critical Section Problem

Consider system of n processes {p0, p1, … pn-1}

Each process has critical section segment of code

Process may be changing common variables,

updating table, writing file, etc

When one process in critical section, no other may

be in its critical section

Critical section problem is to design protocol to solve

this

Each process must ask permission to enter critical

section in entry section, may follow critical section with

exit section, then remainder section

6.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Critical Section

General structure of process Pi

6.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Critical Section Problem

6.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Solution to Critical-Section Problem

A solution to the critical-section problem must satisfy the following

three requirements:

1. Mutual Exclusion - If process Pi is executing in its critical section,

then no other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and

there exist some processes that wish to enter their critical section,

then only those processes that are not executing in their

remainder sections can participate in the decision on which will

enter its critical section next, and this selection cannot be

postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times

that other processes are allowed to enter their critical sections

after a process has made a request to enter its critical section and

before that request is granted

 Assume that each process executes at a nonzero speed

6.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Peterson’s Solution

A classic software based solution to the critical section
problem known as Peterson’s solution

Two process solution

Assume that the LOAD and STORE instructions are atomic;
that is, cannot be interrupted.

The two data items to be shared between the two process:

int turn;

Boolean flag[2]

The variable turn indicates whose turn it is to enter the
critical section.

The flag array is used to indicate if a process is ready to
enter the critical section. flag[i] = true implies that process Pi

is ready!

6.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Peterson’s Solution for process Pi

do {

flag[i] = TRUE ;

turn = j ;

while (flag[j] && turn == j) ;

Do no-op

CRITICAL SECTION

flag [i] = FALSE ;

REMAINDER SECTION

} while (TRUE) ;

flag[i] = TRUE ;
turn = j ;
while (flag[j] && turn == j) ;

flag [i] = FALSE ;

6.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Problem

 For Peterson’s problem below conditions will applied.

Each statement will take 2ms to complete.

For process 0: i=0,j=1; and for process 1: i=1,j=0.

Context switching will occur after 2ms.

In critical section area carried only 3 statements.

In remainder section area carried only 2 statements.

Initial information common to both processes:

turn=0;

flag[0]=FALSE;

flag[1]=FALSE;

6.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Synchronization Hardware

Many systems provide hardware support for critical section code

Uniprocessors – could disable interrupts while modified a shared
variable

Currently running code would execute without preemption. So,
no unexpected modifications could be made to the shared
variable.

This is the approach taken by non-preemptive kernels.

Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable-time
consuming

Modern machines provide special atomic hardware instructions:
TestAndSet ; Swap ;

 Atomic = non-interruptable

Either test memory word and set value

Or swap contents of two memory words

6.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Solution to Critical-section Problem Using Locks

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

A simple tool requires-lock

Race conditions are prevented by requiring that critical section be protected by

locks.

6.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

6.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

6.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

6.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

test_and_set Instruction

Definition:

boolean test_and_set (Boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

1. Executed atomically

2. Returns the original value of passed parameter

3. Set the new value of passed parameter to “TRUE”.

6.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Solution using test_and_set()

Shared Boolean variable lock,
initialized to FALSE

Solution:
do{

while(test_and_set(&lock))

; /* do nothing */

/* critical section */

lock = false;

/* remainder section */

} while (true);

6.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Swap Instruction

Definition:

void Swap (boolean *a, boolean *b)

{

boolean temp = *a;

*a = *b;

*b = temp:

}

6.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Solution using Swap

Shared Boolean variable lock initialized to FALSE; Each
process has a local Boolean variable key.

Solution:

do {

key = TRUE;

while (key == TRUE)

Swap (&lock, &key);

// critical section

lock = FALSE;

// remainder section

} while (TRUE);

6.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Mutex Locks

Previous solutions are complicated and generally inaccessible to
application programmers

OS designers build software tools to solve critical section problem

Simplest is mutex lock

Protect a critical section by first acquire() a lock then
release() the lock

Boolean variable indicating if lock is available or not

Calls to acquire() and release() must be atomic

Usually implemented via hardware atomic instructions

But this solution requires busy waiting

This lock therefore called a spinlock

6.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Semaphore Variables

Hardware based solution to the Critical Section (CS)

problem are complicated for application programmer to

use. To overcome this difficulty, a synchronization tool

called semaphore can be used.

A semaphore is a protected integer variable that can

facilitate and restrict access to shared resources in a

multi-processing environment.

Semaphore S – integer variable ; can not modify

directly. Using two standard operations we can modify

wait() and signal()

Originally called P() and V() (Less complicated)

6.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Semaphore Variable Defination

S: Semaphore;

S.wait(): while (S ≤ 0) do skip;

S = S-1; //Outside the While Loop

S.signal(): S = S+1;

S.wait() and S.signal() operations are atomic in nature that

means when a process executing the process S.wait() or

S.signal() that can not be interrupted.

Using semaphore we can implement mutual exclusion very

easily.

6.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Semaphore Variable

P(S): while S ≤ 0 do skip;

S = S-1;

V(S): S = S+1;

• Implementation with mutex lock:

S = 1;

Pi: S.wait()

CS //Critical Section

S.signal()

RS //Remainder Section

6.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Two types of semaphore
Counting semaphore –If there are more than one but limited resources,

integer value can range over an unrestricted domain

Binary semaphore – If there is a single resource(CS) only , integer value

can range only between 0 and 1; can be simpler to implement

Also known as mutex locks/ Same as a mutex lock

Binary semaphore initialized to 1,Provides mutual exclusion

Can solve various synchronization problems:

Consider P1 and P2 that require S1 to happen before S2

Create a semaphore “synch” initialized to 0

P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

https://www.youtube.com/watch?v=DvF3AsTglUU

https://www.youtube.com/watch?v=DvF3AsTglUU

6.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Semaphore Implementation

Must guarantee that no two processes can execute the
wait() and signal() on the same semaphore at the

same time

Thus, the implementation becomes the critical section
problem where the wait and signal code are placed in

the critical section

Could now have busy waiting in critical section

implementation

But implementation code is short

Little busy waiting if critical section rarely occupied

Note that applications may spend lots of time in critical

sections and therefore this is not a good solution

6.33 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Problem!!!

Processes waiting on a semaphore must

constantly check to see if the semaphore is not

zero. This continual looping is clearly a problem

in a real multiprogramming system (where often

a single CPU is shared among multiple

processes).

This is called busy waiting and it wastes CPU

cycles. When a semaphore does this, it is called

a spinlock.

6.34 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Semaphore Implementation with no Busy waiting

To avoid busy waiting, each semaphore there is an associated

waiting queue of process that are waiting to access the critical

section.

Rather than using a semaphore as a variable, we can use it as a

structure or record which have two fields:

value (of type integer)

list of the processes/ pointer to next record in the list

Two operations:

block() & wakeup ()

typedef struct{

int value;

struct process *list;

} semaphore;

6.35 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Semaphore Implementation with no Busy waiting

Type declaration of semaphore as a record or structure:

type semaphore = record

value : integer;

L : list of processor;

end;

6.36 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Semaphore Implementation with no Busy waiting

Two operations provide: block & wakeup

OS provide the block() system call, which suspends the process that

calls it, and the wakeup() system call which resumes the execution

of blocked process P.

"No busy waiting" means that whenever the process wakes up from

waiting, the condition it was waiting for should hold. That is, it must not

wake up, find the condition false, and again wait on the same

semaphore.

6.37 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Semaphore Implementation with no Busy waiting

Structure semaphore{

int value;

queue L;

}

wait (S){

if (s.value > 0) s.value=s.value-1;

else {

add this process S.L to waiting queue

block();

}

}

Signal (S){

if (S.L != Empty) {

remove a process S.L from the waiting queue;

wakeup(P);

}

else S.value=S.value+1;

}

6.38 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Deadlock and Starvation

Deadlock – two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes

Let S and Q be two semaphores initialized to 1

P0 P1

wait (S); wait (Q);

wait (Q); wait (S);

. .

. .

. .

signal (S); signal (Q);

signal (Q); signal (S);

Starvation – indefinite blocking. A process may never be removed
from the semaphore queue in which it is suspended.

6.39 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Classical Problems of Synchronization

Bounded-Buffer Problem

Readers and Writers Problem

Dining-Philosophers Problem

6.40 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Bounded-Buffer Problem

The problem describes two processes, the
producer and the consumer, who share a
common, fixed-size buffer used as a queue.
The producer's job is to generate a piece of
data, put it into the buffer and start again. At
the same time, the consumer is consuming
the data (i.e., removing it from the buffer) one
piece at a time.

The problem is to make sure that the producer
won't try to add data into the buffer if it's full

and that the consumer won't try to remove
data from an empty buffer.

6.41 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Solution for Bounded-Buffer Problem

The solution for the producer is to either
go to sleep or discard data if the buffer
is full. The next time the consumer
removes an item from the buffer, it
notifies the producer, who starts to fill
the buffer again.

In the same way, the consumer can go
to sleep if it finds the buffer to be empty.
The next time the producer puts data
into the buffer, it wakes up the sleeping
consumer.

6.42 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Inadequate implementation

In the solution, two library routines

are used, sleep and wakeup. When

sleep is called, the caller is blocked

until another process wakes it up by

using the wakeup routine. The global

variable itemCount holds the number

of items in the buffer.

6.43 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Inadequate implementation

procedure consumer() {

while (true) {

if (itemCount == 0) {

sleep();

}

item = removeItemFromBuffer();

itemCount = itemCount - 1;

if (itemCount == BUFFER_SIZE - 1) {

wakeup(producer);

}

consumeItem(item);

}

}

procedure producer() {

while (true) {

item = produceItem();

if (itemCount == BUFFER_SIZE) {

sleep();

}

putItemIntoBuffer(item);

itemCount = itemCount + 1;

if (itemCount == 1) {

wakeup(consumer);

}

}

}

The problem with this solution is that it

lead to a deadlock

6.44 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

It contains a race condition

1. The consumer has just read the variable itemCount, noticed it's

zero and is just about to move inside the if block.

2. Just before calling sleep, the consumer is interrupted and the

producer is resumed.

3. The producer creates an item, puts it into the buffer, and

increases itemCount.

4. Because the buffer was empty prior to the last addition, the

producer tries to wake up the consumer.

5. Unfortunately the consumer wasn't yet sleeping, and the wakeup

call is lost. When the consumer resumes, it goes to sleep and will

never be awakened again. This is because the consumer is

only awakened by the producer when itemCount is equal to

1.

6. The producer will loop until the buffer is full, after which it will also

go to sleep.

6.45 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Using semaphores

Semaphores solve the problem of lost wakeup calls by
using two semaphores, fillCount and emptyCount.

fillCount is the number of items already in the buffer
and available to be read.

emptyCount is the number of available spaces in the
buffer where items could be written.

fillCount is incremented and emptyCount decremented
when a new item is put into the buffer.

If the producer tries to decrement emptyCount when
its value is zero, the producer is put to sleep.

The next time an item is consumed, emptyCount is
incremented and the producer wakes up. The
consumer works analogously.

6.46 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Using semaphores

procedure consumer() {

while (true) {

down(fillCount);

item = removeItemFromBuffer();

up(emptyCount);

consumeItem(item);

}

}

procedure producer() {

while (true) {

item = produceItem();

down(emptyCount);

putItemIntoBuffer(item);

up(fillCount);

}

}

The solution works fine when there is

only one producer and consumer

semaphore fillCount = 0; // items produced

semaphore emptyCount = BUFFER_SIZE; // remaining space

6.47 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

With multiple producers and consumers

this solution contains a serious race

condition that could result in two or

more processes reading or writing

into the same slot at the same time.

It could contain two actions, one

determining the next available slot and

the other writing into it.

6.48 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

With multiple producers and consumers

If the procedure can be executed

concurrently by multiple producers, then

the following scenario is possible:

Two producers decrement emptyCount

One of the producers determines the next

empty slot in the buffer

Second producer determines the next empty

slot and gets the same result as the first

producer

Both producers write into the same slot

6.49 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Using semaphores

procedure consumer() {

while (true) {

down(fillCount);

down(mutex);

item = removeItemFromBuffer();

up(mutex);

up(emptyCount);

consumeItem(item);

}

}

procedure producer() {

while (true) {

item = produceItem();

down(emptyCount);

down(mutex);

putItemIntoBuffer(item);

up(mutex);

up(fillCount);

}

}
the order in which different semaphores are incremented or

decremented is essential: changing the order might result in a deadlock.

To overcome this problem, we need a way to make sure that only one

producer is executing putItemIntoBuffer() at a time.

semaphore mutex = 1;

semaphore fillCount = 0;

semaphore emptyCount = BUFFER_SIZE;

6.50 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Readers-Writers Problem

Definition

There is a data area that is shared among a number of

processes.

Any number of readers may simultaneously read to the data

area.

Only one writer at a time may write to the data area.

If a writer is writing to the data area, no reader may read it.

If there is at least one reader reading the data area, no writer

may write to it.

Readers only read and writers only write

A process that reads and writes to a data area must be

considered a writer (consider producer or consumer)

6.51 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Readers-Writers Problem

Problem!!!
allow multiple readers to read at the same time. Only one

single writer can access the shared data at the same time.

If a writer and some other thread access the database

simultaneously, chaos may ensure.

To ensure that these difficulties do not arise, we require that

the writer have exclusive access to the shared database.

This synchronization problem is referred to as readers-

writers problems.

6.53 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Readers-Writers Problem

As solution to either problem may result
in starvation.

In the first case writers may starve and
in the second case readers may starve.

For this reason other variant of the
problem have been proposed.

the third readers-writers adds the constrain
that know thread shall be allowed to starve;
that is the operation of obtaining a lock on
the shared data will always terminate in a
bounded amount of time.

6.54 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Readers-Writers Problem

The solution of the first Reader-writer problem:

Shared Data

Data set

Semaphore mutex initialized to 1.

Semaphore wrt initialized to 1.

Integer readcount initialized to 0.

The semaphore wrt is common to both reader and writer

processes.

The mutex semaphore is used to ensure mutual exclusion

when the variable readcount is updated. The readcount

variable keeps track of how many processes are currently

reading the object.

6.55 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Readers-Writers Problem (Cont.)

The structure of a reader process

do {

wait (mutex) ;

readcount ++ ;

if (readercount == 1) wait (wrt) ;

signal (mutex)

// reading is performed

wait (mutex) ;

readcount -- ;

if (redacount == 0) signal (wrt) ;

signal (mutex) ;

} while (true)

● Needs mutually exclusive access

while manipulating “readers” variable

● Does not need mutually exclusive

access while reading database

● If this reader is the first reader, it has

to wait if there is an active writer (which

has exclusive access to the database) n

First reader did a “P(write)”

● If other readers come along while the

first one is waiting, they wait at the

“P(mutex)”

● If other readers come along while the

first one is actively reading the

database, they can also get in to read

the database

● When the last reader finishes, if there

are waiting writers, it must wake one up

6.56 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Readers-Writers Problem (Cont.)

The structure of a writer

process

do {

wait (wrt) ;

// writing is performed

signal (wrt) ;

} while (true)

If there is an active writer, other writer
has to wait (the active writer has
exclusive access to database)

If there are active readers, this writer
has to wait (readers have priority) n
First reader did a “P(write)”

The writer only gets in to write to the
database when there are no other
active readers or writers

When the writer finishes, it wakes up
someone (either a reader or a writer it’s
up to the CPU scheduler)

If a reader gets to go next, then once it
goes through the “V(mutex)” and starts
reading the database, then all other
readers waiting at the top “P(mutex”)
get to get in and read the database as
well

6.57 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Dining-Philosophers Problem

Problem statement

Five silent philosophers sit at a round table with bowls of spaghetti.

Forks are placed between each pair of adjacent philosophers.

Each philosopher must alternately think and eat. However, a

philosopher can only eat spaghetti when he has both left and right

forks. Each fork can be held by only one philosopher and so a

philosopher can use the fork only if it is not being used by another

philosopher. After he finishes eating, he needs to put down both

forks so they become available to others. A philosopher can take

the fork on his right or the one on his left as they become available,

but cannot start eating before getting both of them.

Eating is not limited by the remaining amounts of spaghetti or

stomach space; an infinite supply is assumed. assuming that no

philosopher can know when others may want to eat or think.

6.58 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Dining-Philosophers Problem

Shared data

Bowl of rice (data set)

Semaphore chopstick [5] initialized to 1

6.59 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Dining-Philosophers Problem (Cont.)

The structure of Philosopher i:

Do {

wait (chopstick[i]);

wait (chopStick[(i + 1) % 5]);

// eat

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

// think

} while (true) ;

6.60 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Dining-Philosophers Problem

Must satisfy mutual exclusion - no

two philosopher can use the same

fork at the same time.

Avoid deadlock and starvation!

6.61 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Dining-Philosophers Problem

First attempt: take left fork, then take right

fork

Wrong! Results in deadlock.

▪ Second attempt: take left fork, check to

see if right is available, if not put left one

down. Still has race condition and can lead

to starvation.

6.62 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Suggestion to solve the problem

Allow at most four philosophers to be

sitting simultaneously at the table.

Allow a philosopher to pick up her

chopsticks only if both chopsticks are

available.

An odd philosopher picks up her left

chopstick first and even philosopher

picks up her right chopstick first.

6.63 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

End of Chapter 6

Thank You

