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Chapter - 6  

Process Synchronization
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Background

Processes can execute concurrently 

Concurrent access to shared data may result in data 

inconsistency

Maintaining data consistency requires mechanisms to 

ensure the orderly execution of cooperating processes
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Process Synchronization: Objectives 

Concept of process synchronization. 

The critical-section problem, whose solutions can be used to 

ensure the consistency of shared data 

Software and hardware solutions of the critical-section problem 

Classical process-synchronization problems

Tools that are used to solve process synchronization problems
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What will Cover

Process Synchronization basic 

Concepts 

The Critical-Section Problem

Peterson’s Solution

Synchronization Hardware

Semaphores

Classic problems of synchronization
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Process Synchronization

Process Synchronization means sharing system resources 

by processes in such a way that, Concurrent access to 

shared data is handled thereby minimizing the chance of 

inconsistent data. Maintaining data consistency demands 

mechanisms to ensure synchronized execution of 

cooperating processes.

Process Synchronization was introduced to handle 

problems that arose while multiple process executions.
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Illustration….

Suppose that we wanted to provide a solution to the consumer-

producer problem that fills all the buffers(actually support bounded 

buffer). We can do so by having an integer count that keeps track of 

the number of full buffers.  Initially, count is set to 0. It is incremented 

by the producer after it produces a new buffer and is decremented by 

the consumer after it consumes a buffer.
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Producer 

while (true) 

{

/* produce an item and put in nextProduced

while (count == BUFFER_SIZE)

; // do nothing

buffer [in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

count++;

}   
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Consumer

while (1) 

{

while (count == 0)

; // do nothing

nextConsumed =  buffer[out];

out = (out + 1) % BUFFER_SIZE;

count--;

/*  consume the item in nextConsumed

}
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Race Condition

count++ could be implemented as

register1 = count
register1 = register1 + 1
count = register1

count-- could be implemented as

register2 = count
register2 = register2 - 1
count = register2

Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = count {register1 = 5}
S1: producer execute register1 = register1 + 1  {register1 = 6} 
S2: consumer execute register2 = count {register2 = 5} 
S3: consumer execute register2 = register2 - 1 {register2 = 4} 
S4: producer execute count = register1 {count = 6 } 
S5: consumer execute count = register2 {count = 4}
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Race Condition

A situation where several processes access and 

manipulate the same data concurrently, and the outcome of 

the execution depends on the particular order in which the 

access takes place, is called race condition.

To guard against the race condition above, we need to 

ensure that only one process at a time can be 

manipulating the variable counter. To make such a 

guarantee , we require that the processes be 

synchronized in some way. 
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Critical Section Problem

Consider system of n processes {p0, p1, … pn-1}

Each process has critical section segment of code

Process may be changing common variables, 

updating table, writing file, etc

When one process in critical section, no other may 

be in its critical section

Critical section problem is to design protocol to solve 

this

Each process must ask permission to enter critical 

section in entry section, may follow critical section with 

exit section, then remainder section
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Critical Section

General structure of process Pi  
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Critical Section Problem
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Solution to Critical-Section Problem

A solution to the critical-section problem must satisfy the following 

three requirements: 

1. Mutual Exclusion - If process Pi is executing in its critical section, 

then no other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and 

there exist some processes that wish to enter their critical section, 

then only those processes that are not executing in their 

remainder sections can participate in the decision on which will 

enter its critical section next, and this selection cannot be 

postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times 

that other processes are allowed to enter their critical sections 

after a process has made a request to enter its critical section and 

before that request is granted

 Assume that each process executes at a nonzero speed 
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Peterson’s Solution

A classic software based solution to the critical section 
problem known as Peterson’s solution

Two process solution

Assume that the LOAD and STORE instructions are atomic; 
that is, cannot be interrupted.

The two data items to be shared between the two process:

int turn; 

Boolean flag[2]

The variable turn indicates whose turn it is to enter the 
critical section.  

The flag array is used to indicate if a process is ready to 
enter the critical section. flag[i] = true implies that process Pi

is ready!
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Peterson’s Solution for process Pi

do {

flag[i] = TRUE ;

turn = j ;

while ( flag[j] && turn == j) ;

Do no-op

CRITICAL SECTION

flag [ i ] = FALSE ;

REMAINDER SECTION

} while (TRUE) ;

flag[i] = TRUE ;
turn = j ;
while ( flag[j] && turn == j) ;

flag [ i ] = FALSE ;
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Problem

 For Peterson’s problem below conditions will applied.   

Each statement will take 2ms to complete. 

For process 0: i=0,j=1; and for process 1: i=1,j=0. 

Context switching will occur after 2ms.

In critical section area carried only 3 statements.

In remainder section area carried only 2 statements.

Initial information common to both processes:

turn=0;

flag[0]=FALSE;

flag[1]=FALSE;
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Synchronization Hardware

Many systems provide hardware support for critical section code

Uniprocessors – could disable interrupts while modified a shared 
variable

Currently running code would execute without preemption. So, 
no unexpected modifications could be made to the shared 
variable.

This is the approach taken by non-preemptive kernels.

Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable-time 
consuming

Modern machines provide special atomic hardware instructions: 
TestAndSet ; Swap ; 

 Atomic = non-interruptable

Either test memory word and set value

Or swap contents of two memory words
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Solution to Critical-section Problem Using Locks

do { 

acquire lock 

critical section 

release lock 

remainder section 

} while (TRUE); 

A simple tool requires-lock

Race conditions are prevented by requiring that critical section be protected by 

locks.
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test_and_set  Instruction 

Definition:

boolean test_and_set (Boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

1. Executed atomically

2. Returns the original value of passed parameter

3. Set the new value of passed parameter to “TRUE”.
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Solution using test_and_set()

Shared Boolean variable lock, 
initialized to FALSE

Solution:
do{

while(test_and_set(&lock)) 

; /* do nothing */ 

/* critical section */ 

lock = false; 

/* remainder section */ 

} while (true);
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Swap  Instruction

Definition:

void Swap (boolean *a, boolean *b)

{

boolean temp = *a;

*a = *b;

*b = temp:

}
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Solution using Swap

Shared Boolean variable lock initialized to FALSE; Each 
process has a local Boolean variable key.

Solution:

do {

key = TRUE;

while ( key == TRUE)

Swap (&lock, &key );

//    critical section

lock = FALSE;

//      remainder section 

} while ( TRUE);
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Mutex Locks

Previous solutions are complicated and generally inaccessible to 
application programmers

OS designers build software tools to solve critical section problem

Simplest is mutex lock

Protect a critical section  by first acquire() a lock then 
release() the lock

Boolean variable indicating if lock is available or not

Calls to acquire() and release() must be atomic

Usually implemented via hardware atomic instructions

But this solution requires busy waiting

This lock therefore called a spinlock



6.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Semaphore Variables

Hardware based solution to the Critical Section (CS) 

problem are complicated for application programmer to 

use. To overcome this difficulty, a synchronization tool 

called  semaphore can be used.

A semaphore is a protected integer variable that can 

facilitate and restrict access to shared resources in a 

multi-processing environment.

Semaphore S – integer variable ; can not modify 

directly. Using two standard operations we can modify  

wait() and signal()

Originally called P() and V() (Less complicated)
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Semaphore Variable Defination

S: Semaphore;

S.wait(): while (S ≤ 0) do skip;

S = S-1; //Outside the While Loop

S.signal(): S = S+1;

S.wait() and S.signal() operations  are atomic in  nature that 

means when a process executing the process S.wait() or 

S.signal() that can not be interrupted.

Using semaphore we can implement mutual exclusion very 

easily.
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Semaphore Variable

P(S): while S ≤ 0 do skip;

S = S-1;

V(S): S = S+1;

• Implementation with mutex lock:

S = 1;

Pi: S.wait()

CS //Critical Section

S.signal()

RS //Remainder Section
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Two types of semaphore
Counting semaphore –If there are more than one but limited resources, 

integer value can range over an unrestricted domain

Binary semaphore – If there is a single resource(CS) only , integer value 

can range only between 0 and 1; can be simpler to implement

Also known as mutex locks/ Same as a mutex lock

Binary semaphore initialized to 1,Provides mutual exclusion

Can solve various synchronization problems:

Consider P1 and P2 that require S1 to happen before S2

Create a semaphore “synch” initialized to 0 

P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

https://www.youtube.com/watch?v=DvF3AsTglUU

https://www.youtube.com/watch?v=DvF3AsTglUU
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Semaphore Implementation

Must guarantee that no two processes can execute  the 
wait() and signal() on the same semaphore at the 

same time

Thus, the implementation becomes the critical section 
problem where the wait and signal code are placed in 

the critical section

Could now have busy waiting in critical section 

implementation

But implementation code is short

Little busy waiting if critical section rarely occupied

Note that applications may spend lots of time in critical 

sections and therefore this is not a good solution
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Problem!!!

Processes waiting on a semaphore must 

constantly check to see if the semaphore is not 

zero. This continual looping is clearly a problem 

in a real multiprogramming system (where often 

a single CPU is shared among multiple 

processes). 

This is called busy waiting and it wastes CPU 

cycles. When a semaphore does this, it is called 

a spinlock.
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Semaphore Implementation with no Busy waiting 

To avoid busy waiting, each semaphore there is an associated 

waiting queue of process that are waiting to access the critical 

section. 

Rather than using a semaphore as a variable, we can use it as a 

structure or record which have two fields: 

value (of type integer)

list of the processes/  pointer to next record in the list

Two operations:

block()  & wakeup ()

typedef struct{ 

int value; 

struct process *list; 

} semaphore; 
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Semaphore Implementation with no Busy waiting 

Type declaration of semaphore as a record or structure:

type semaphore = record

value : integer;

L : list of processor;

end;
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Semaphore Implementation with no Busy waiting 

Two operations provide:  block & wakeup

OS provide the block() system call, which suspends the process that 

calls it, and the wakeup() system call which resumes the execution 

of blocked process P.

"No busy waiting" means that whenever the process wakes up from 

waiting, the condition it was waiting for should hold. That is, it must not 

wake up, find the condition false, and again wait on the same 

semaphore.
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Semaphore Implementation with no Busy waiting 

Structure semaphore{ 

int value;

queue L;

}

wait (S){ 

if (s.value > 0) s.value=s.value-1;

else { 

add this process S.L to waiting queue

block(); 

}

}

Signal (S){

if (S.L != Empty) { 

remove a process S.L from the waiting queue;

wakeup(P);  

}

else S.value=S.value+1; 

}
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Deadlock and Starvation

Deadlock – two or more processes are waiting indefinitely for an 
event that can be caused by only one of the waiting processes

Let S and Q be two semaphores initialized to 1

P0 P1

wait (S); wait (Q);

wait (Q); wait (S);

. .

. .

. .

signal  (S); signal (Q);

signal (Q); signal (S);

Starvation – indefinite blocking.  A process may never be removed 
from the semaphore queue in which it is suspended.
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Classical Problems of Synchronization

Bounded-Buffer Problem

Readers and Writers Problem

Dining-Philosophers Problem
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Bounded-Buffer Problem

The problem describes two processes, the 
producer and the consumer, who share a 
common, fixed-size buffer used as a queue. 
The producer's job is to generate a piece of 
data, put it into the buffer and start again. At 
the same time, the consumer is consuming 
the data (i.e., removing it from the buffer) one 
piece at a time. 

The problem is to make sure that the producer 
won't try to add data into the buffer if it's full 

and that the consumer won't try to remove 
data from an empty buffer.
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Solution for Bounded-Buffer Problem

The solution for the producer is to either 
go to sleep or discard data if the buffer 
is full. The next time the consumer 
removes an item from the buffer, it 
notifies the producer, who starts to fill 
the buffer again. 

In the same way, the consumer can go 
to sleep if it finds the buffer to be empty. 
The next time the producer puts data 
into the buffer, it wakes up the sleeping 
consumer. 
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Inadequate implementation

In the solution, two library routines 

are used, sleep and wakeup. When 

sleep is called, the caller is blocked 

until another process wakes it up by 

using the wakeup routine. The global 

variable itemCount holds the number 

of items in the buffer.
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Inadequate implementation

procedure consumer() {

while (true) {

if (itemCount == 0) {

sleep();

}

item = removeItemFromBuffer();

itemCount = itemCount - 1;

if (itemCount == BUFFER_SIZE - 1) {

wakeup(producer);

}

consumeItem(item);

}

}

procedure producer() {

while (true) {

item = produceItem();

if (itemCount == BUFFER_SIZE) {

sleep();

}

putItemIntoBuffer(item);

itemCount = itemCount + 1;

if (itemCount == 1) {

wakeup(consumer);

}

}

}

The problem with this solution is that it 

lead to a deadlock
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It contains a race condition

1. The consumer has just read the variable itemCount, noticed it's 

zero and is just about to move inside the if block.

2. Just before calling sleep, the consumer is interrupted and the 

producer is resumed.

3. The producer creates an item, puts it into the buffer, and 

increases itemCount.

4. Because the buffer was empty prior to the last addition, the 

producer tries to wake up the consumer.

5. Unfortunately the consumer wasn't yet sleeping, and the wakeup 

call is lost. When the consumer resumes, it goes to sleep and will 

never be awakened again. This is because the consumer is 

only awakened by the producer when itemCount is equal to 

1.

6. The producer will loop until the buffer is full, after which it will also 

go to sleep.
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Using semaphores

Semaphores solve the problem of lost wakeup calls by 
using two semaphores, fillCount and emptyCount.

fillCount is the number of items already in the buffer 
and available to be read.

emptyCount is the number of available spaces in the 
buffer where items could be written.

fillCount is incremented and emptyCount decremented 
when a new item is put into the buffer. 

If the producer tries to decrement emptyCount when 
its value is zero, the producer is put to sleep. 

The next time an item is consumed, emptyCount is 
incremented and the producer wakes up. The 
consumer works analogously.
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Using semaphores

procedure consumer() {

while (true) {

down(fillCount);

item = removeItemFromBuffer();

up(emptyCount);

consumeItem(item);

}

}

procedure producer() {

while (true) {

item = produceItem();

down(emptyCount);

putItemIntoBuffer(item);

up(fillCount);

}

}

The solution works fine when there is 

only one producer and consumer

semaphore fillCount = 0; // items produced

semaphore emptyCount = BUFFER_SIZE; // remaining space
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With multiple producers and consumers

this solution contains a serious race 

condition that could result in two or 

more processes reading or writing 

into the same slot at the same time. 

It could contain two actions, one 

determining the next available slot and 

the other writing into it. 
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With multiple producers and consumers

If the procedure can be executed 

concurrently by multiple producers, then 

the following scenario is possible:

Two producers decrement emptyCount

One of the producers determines the next 

empty slot in the buffer

Second producer determines the next empty 

slot and gets the same result as the first 

producer

Both producers write into the same slot
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Using semaphores

procedure consumer() {

while (true) {

down(fillCount);

down(mutex);

item = removeItemFromBuffer();

up(mutex);

up(emptyCount);

consumeItem(item);

}

}

procedure producer() {

while (true) {

item = produceItem();

down(emptyCount);

down(mutex);

putItemIntoBuffer(item);

up(mutex);

up(fillCount);

}

}
the order in which different semaphores are incremented or 

decremented is essential: changing the order might result in a deadlock.

To overcome this problem, we need a way to make sure that only one 

producer is executing putItemIntoBuffer() at a time.

semaphore mutex = 1;

semaphore fillCount = 0;

semaphore emptyCount = BUFFER_SIZE;
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Readers-Writers Problem

Definition

There is a data area that is shared among a number of 

processes.

Any number of readers may simultaneously read to the data 

area.

Only one writer at a time may write to the data area.

If a writer is writing to the data area, no reader may read it.

If there is at least one reader reading the data area, no writer 

may write to it.

Readers only read and writers only write

A process that reads and writes to a data area must be 

considered a writer (consider producer or consumer)
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Readers-Writers Problem

Problem!!!
allow multiple readers to read at the same time.  Only one 

single writer can access the shared data at the same time.

If a writer and some other thread access the database 

simultaneously, chaos may ensure.

To ensure that these difficulties do not arise, we require that 

the writer have exclusive access to the shared database. 

This synchronization problem is referred to as readers-

writers problems.
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Readers-Writers Problem

As solution to either problem may result 
in starvation.

In the first case writers may starve and 
in the second case readers may starve.

For this reason other variant of the 
problem have been proposed.

the third readers-writers adds the constrain 
that know thread shall be allowed to starve; 
that is the operation of obtaining a lock on 
the shared data will always terminate in a 
bounded amount of time. 
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Readers-Writers Problem

The solution of the first Reader-writer problem:

Shared Data

Data set

Semaphore mutex initialized to 1.

Semaphore wrt initialized to 1.

Integer readcount initialized to 0.

The semaphore wrt is common to both reader and writer 

processes.

The mutex semaphore is used to ensure mutual exclusion 

when the variable readcount is updated. The readcount

variable keeps track of how many processes are currently 

reading the object.
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Readers-Writers Problem (Cont.)

The structure of a reader process

do  {

wait (mutex) ;

readcount ++ ;

if (readercount == 1)  wait (wrt) ;

signal (mutex)

// reading is performed

wait (mutex) ;

readcount -- ;

if (redacount == 0)  signal (wrt) ;

signal (mutex) ;

} while (true)

● Needs mutually exclusive access 

while manipulating “readers” variable

● Does not need mutually exclusive 

access while reading database

● If this reader is the first reader, it has 

to wait if there is an active writer (which 

has exclusive access to the database) n 

First reader did a “P(write)”

● If other readers come along while the 

first one is waiting, they wait at the 

“P(mutex)”

● If other readers come along while the 

first one is actively reading the 

database, they can also get in to read 

the database

● When the last reader finishes, if there 

are waiting writers, it must wake one up
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Readers-Writers Problem (Cont.)

The structure of a writer

process

do  {

wait (wrt) ;

//    writing is performed

signal (wrt) ;

} while (true)

If there is an active writer, other writer 
has to wait (the active writer has 
exclusive access to database)

If there are active readers, this writer 
has to wait (readers have priority) n 
First reader did a “P(write)”

The writer only gets in to write to the 
database when there are no other 
active readers or writers

When the writer finishes, it wakes up 
someone (either a reader or a writer it’s 
up to the CPU scheduler)

If a reader gets to go next, then once it 
goes through the “V(mutex)” and starts 
reading the database, then all other 
readers waiting at the top “P(mutex”) 
get to get in and read the database as 
well
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Dining-Philosophers Problem

Problem statement

Five silent philosophers sit at a round table with bowls of spaghetti. 

Forks are placed between each pair of adjacent philosophers.

Each philosopher must alternately think and eat. However, a 

philosopher can only eat spaghetti when he has both left and right 

forks. Each fork can be held by only one philosopher and so a 

philosopher can use the fork only if it is not being used by another 

philosopher. After he finishes eating, he needs to put down both 

forks so they become available to others. A philosopher can take 

the fork on his right or the one on his left as they become available, 

but cannot start eating before getting both of them.

Eating is not limited by the remaining amounts of spaghetti or 

stomach space; an infinite supply is assumed. assuming that no 

philosopher can know when others may want to eat or think.
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Dining-Philosophers Problem

Shared data 

Bowl of rice (data set)

Semaphore chopstick [5] initialized to 1
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Dining-Philosophers Problem (Cont.)

The structure of Philosopher i:

Do  { 

wait ( chopstick[i] );

wait ( chopStick[ (i + 1) % 5] );

//  eat

signal ( chopstick[i] );

signal (chopstick[ (i + 1) % 5] );

//  think

} while (true) ;
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Dining-Philosophers Problem

Must satisfy mutual exclusion - no 

two philosopher can use the same 

fork at the same time.

Avoid deadlock and starvation!
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Dining-Philosophers Problem

First attempt: take left fork, then take right 

fork 

Wrong! Results in deadlock. 

▪ Second attempt: take left fork, check to 

see if right is available, if not put left one 

down. Still has race condition and can lead 

to starvation. 
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Suggestion to solve the problem

Allow at most four philosophers to be 

sitting simultaneously at the table.

Allow a philosopher to pick up her 

chopsticks only if both chopsticks are 

available.

An odd philosopher picks up her left 

chopstick first and even philosopher 

picks up her right chopstick first.
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End of Chapter 6

Thank You


