
Chapter 8: Memory Management

8.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Chapter 8: Memory Management

Background

Swapping

Contiguous Allocation

Paging

Segmentation

8.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Background

Program must be brought into memory and placed within a

process for it to be run

Input queue – collection of processes on the disk that are waiting

to be brought into memory to run the program

Each process has a separate address space

Base register: smallest legal physical memory address

Limit register: size of the range

Memory Background

Stream of memory address.

They are used for instruction or data.

8.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

A base and a limit register define a logical address space

If the base register holds 30004 and limit register 12090, the program

can legally access all address from 30004 through 42094 (inclusive)

8.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

HW address protection with base and limit registers

8.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Logical vs. Physical Address Space

The concept of a logical address space that is bound to a separate

physical address space is central to proper memory management

Logical address – generated by the CPU; also referred to as

virtual address

Physical address – address seen by the memory unit

Logical and physical addresses are the same in compile-time and

load-time address-binding schemes;

logical (virtual) and physical addresses differ in execution-time

address-binding scheme

8.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Memory-Management Unit (MMU)

Hardware device that maps virtual to physical address

In MMU scheme, the value in the relocation register is added to

every address generated by a user process at the time it is sent to

memory

The user program deals with logical addresses; it never sees the

real physical addresses

8.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Dynamic relocation using a relocation register

8.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Swapping

A process can be swapped temporarily out of memory to a backing
store, and then brought back into memory for continued execution

Backing store – fast disk large enough to accommodate copies of
all memory images for all users; must provide direct access to
these memory images

Roll out, roll in – swapping variant used for priority-based
scheduling algorithms; lower-priority process is swapped out so
higher-priority process can be loaded and executed

Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped

Modified versions of swapping are found on many systems (i.e.,
UNIX, Linux, and Windows)

8.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Schematic View of Swapping

8.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Contiguous Allocation

Main memory usually into two partitions:

Resident operating system, usually held in low memory with

interrupt vector

User processes then held in high memory

Memory mapping and protection

Relocation-register scheme used to protect user processes

from each other, and from changing operating-system code

and data

Relocation register contains value of smallest physical address

Limit register contains range of logical addresses – each

logical address must be less than the limit register

8.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Relocation and Limit registers

8.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Contiguous Allocation (Cont.)

Multiple-partition allocation

Hole – block of available memory; holes of various size are

scattered throughout memory

When a process arrives, it is allocated memory from a hole

large enough to accommodate it

Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

8.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Dynamic Storage-Allocation Problem

First-fit: Allocate the first hole that is big enough

Best-fit: Allocate the smallest hole that is big enough;

must search entire list, unless ordered by size. Produces

the smallest leftover hole.

Worst-fit: Allocate the largest hole; must also search

entire list. Produces the largest leftover hole.

How to satisfy a request of size n from a list of free holes

First-fit and best-fit better than worst-fit in terms of

speed and storage utilization

8.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Given memory partitions of 200k,

250k,250k,200k, 320k, and 600k (in

order, bottom to top), apply first fit,

worst fit and best fit algorithms to

place processes with the space

requirement of 240k, 425k, 112k and

426k (in order). Which algorithm

makes the most effective use of

memory?

8.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Fragmentation

External Fragmentation – total memory space exists to satisfy a

request, but it is not contiguous

Internal Fragmentation – allocated memory may be slightly larger

than requested memory; this size difference is memory internal to a

partition, but not being used

Reduce external fragmentation by compaction

Shuffle memory contents to

place all free memory together

in one large block

Compaction is possible only

if relocation is dynamic, and

is done at execution time

I/O overhead

8.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Paging

Logical address space of a process can be non-contiguous;

process is allocated physical memory whenever the latter is

available

Divide physical memory into fixed-sized blocks called frames

(size is power of 2, between 512 bytes and 8192 bytes)

Divide logical memory into blocks of same size called pages.

Keep track of all free frames

To run a program of size n pages, need to find n free frames and

load program

Set up a page table to translate logical to physical addresses

Internal fragmentation

8.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Address Translation Scheme

Address generated by CPU is divided into:

Page number (p) – used as an index into a page table

which contains base address of each page in physical

memory

Page offset (d) – combined with base address to define

the physical memory address that is sent to the memory

unit

8.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Address Translation Architecture

8.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Paging Example

8.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Paging Example

8.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Free Frames

Before allocation After allocation

8.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Memory Protection

Memory protection implemented by associating protection bit

with each frame

Valid-invalid bit attached to each entry in the page table:

“valid” indicates that the associated page is in the process’

logical address space, and is thus a legal page

“invalid” indicates that the page is not in the process’

logical address space

8.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Valid (v) or Invalid (i) Bit In A Page Table

8.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Shared Pages

Shared code

One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window systems).

Shared code must appear in same location in the logical

address space of all processes

Private code and data

Each process keeps a separate copy of the code and data

The pages for the private code and data can appear

anywhere in the logical address space

8.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Shared Pages Example

8.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Assume that page size = 2 bytes and Physical Memory = 34 bytes. If CPU generates logical addresses 5, 3, 9, 0, 11 and 7

respectively then how the users’ view of memory can be mapped into physical memory?

8.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Segmentation

Memory-management scheme that supports user view of memory

A program is a collection of segments. A segment is a logical unit
such as:

main program,

procedure,

function,

method,

object,

local variables, global variables,

common block,

stack,

symbol table, arrays

8.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

User’s View of a Program

8.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

8.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Segmentation Architecture

Logical address consists of a two tuple:

<segment-number, offset>,

Segment table – maps two-dimensional physical addresses;

each table entry has:

base – contains the starting physical address where the

segments reside in memory

limit – specifies the length of the segment

Segment-table base register (STBR) points to the segment

table’s location in memory

Segment-table length register (STLR) indicates number of

segments used by a program;

segment number s is legal if s < STLR

8.33 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Address Translation Architecture

8.34 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example of Segmentation

8.35 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Sharing of Segments

8.36 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Segmentation Architecture (Cont.)

Protection. With each entry in segment table associate:

validation bit = 0 illegal segment

read/write/execute privileges

Since segments vary in length, memory allocation is a

dynamic storage-allocation problem

Segmentation leads to external fragmentation

Code sharing occurs at segment level; shared segments

8.37 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Consider the following segment table:

(a) 0,430

(b) 1,10

(c) 2,500

(d) 3,400

(e) 4,112

•(a) 219 + 430 = 649

•(b) 2300 + 10 = 2310

•(c) illegal reference; traps to operating system

•(d) 1327 + 400 = 1727

•(e) illegal reference; traps to operating system

End of Chapter 8

