N\YFZANYIANYIANTVI ANV I ANTY I ANY S AN

Z Qﬂ%ﬂ\ﬂ%ﬂ%ﬂ%ﬂ% /
NYZANYZANYZANYZANYZANYZANTZ4N
ZA\YZANYZANVZANYZANYZANYZA\Y/
NYZANYZANYZANYZANYZANYZANTZAN

JANVIANVIANVIANVIANVIANVIANYS

bdullah Bin Kasem Bhuiyan

OBJECT ORIENTED PROGRAMMING |

GGGGGGGGGGGGGGGGGG

VARIABLES

A variable is a named memory location capable of storing data

As we have already seen, object variables refer to objects, which
are created by instantiating classes with the new operator

We can also store data in simple variables, which represent data
only, without any associated methods

DATA DECLARATION SYNTAX

The syntax for the declaration of a variable is:
Data type identifier;

“data type” may be the name of a class, as we have seen, or
may be one of the simple types, which we’ll see in a moment

“identifier” is a legal Java identifier; the rules for simple
variable identifiers are the same as those for object identifiers

VARIABLE DECLARATION: EXAMPLES

For example:
int age; // int means integer

double cashAmount; // double is a real #

We can also declare multiple variables of the same type using a single instruction; for
example:

intx,y,z// or

int X,
Vi
Z;

The second way is preferable, because it’s easier to document the purpose of each variable
this way.

DATA TYPES

Data types specify the different sizes and values that can be
stored in the variable. There are two types of data types in Java:

Primitive data types: The primitive data types include boolean,
char, byte, short, int, long, float and double.

Non-primitive data types: The non-primitive data types include
Classes, Interfaces, and Arrays.

JAVA PRIMITIVE DATA TYPES

In Java language, primitive data types are the building blocks of data
manipulation. These are the most basic data types available in java.

here are 8 types of primitive data types:
boolean data type
byte data type
char data type
short data type
int data type
long data type
float data type
double data type

NON-PRIMITIVE DATA TYPE OR REFERENCE DATA TYPES

The Reference Data Types will contain a memory address of variable value
because the reference types won’t store the variable value directly in memory.
They are strings, objects, arrays, etc.

String
Array
Class
Obiject

Interface

Data Type

/\

Primitive Non-Primitive
/\ —— String

Boolean Numeric Array
__ etc.

A
Character yggral\

Integer Floating-point

boolean ch:ar byte short int long float double

TYPE DESCRIPTION DEFAULT | SIZE EXAMPLE LITERALS RANGE OF VALUES
boolean true or false false 1 bit true, false true. false
byte twos complement integer 0 8 bits (none) -128 to 127
char unicode character \u0000 16 bits ‘a’, Ww0041’, \101°, ‘W', V,"\n",’ p’ character representation
of ASCII values
0 to 255
short twos complement integer 0 16 bits (none) -32.768
to
32,767
int twos complement integer 0 32 bits 2,-1:0,1,2 -2 147.483.648
to
2,147,483,647
long twos complement integer 0 64 bits 2L, 1L, 0L, 1L, 2L -9.223.372.036.854.775.808
to
9,223,372,036,854,775,807
float IEEE 754 floating point 0.0 32 bits 1.23e100f, -1.23e-100f, .31, 3.14F upto 7 decimal digits
double IEEE 754 floating point 0.0 64 bits 1.23456e300d, -1.23456e-300d, 1e1d

upto 16 decimal digits

OPERATORS

Operator in Java is a symbol which is used to perform operations.
For example: +, -, *, / etc.

We can divide all the Java operators into the following groups -
Arithmetic Operators

Relational Operators
Bitwise Operators
Logical Operators
Assignment Operators

https://www.javatpoint.com/java-tutorial

THE ARITHMETIC

OPERATORS

Arithmetic operators are
used in mathematical
expressions in the same way
that they are wused in
algebra.

Assume integer variable
A holds 10 and variable
B holds 20, then -

Operator

+ (Addition)

- (Subtraction)

= (Multiplication)

/M (Division)

Y% (Modulus)

++ (Increment)

— (Decrement)

Description

Adds values on either side of
the operator.

Subtracts right-hand operand
from left-hand operand.

Multiphes values on either side
of the operator.

Divides left-hand operand by
right-hand operand.

Divides left-hand operand by
right-hand operand and returns
remainder.

Increases the value of operand
by 1.

Decreases the value of
operand by 1.

Example

A+ B will give 30

A - B will give -10

AT B will give 200

B /A will give 2

B % Awill give O

B++ gives 21

B-- gives 19

THE RELATIONAL

OPERATORS

There are following
relational operators
supported by Java
language.

Assume variable A holds
10 and variable B holds
20, then -

Operator

== {equal to)

I= (not equal to)

= (greater than)

= (less than)

== (greater than

or equal to)

== (less than or
equal to)

Description

Checks If the values of two operands
are equal or not, if yes then condition
becomes true.

Checks if the values of two operands
are equal or not, if values are not
equal then condition becomes true.

Checks if the value of left operand is
greater than the value of right
operand, if yes then condition
becomes true.

Checks if the value of left operand is
less than the value of right operand, if
yes then condition becomes true.

Checks if the value of left operand is
greater than or equal to the value of
right operand, if yes then condition
becomes true.

Checks if the value of left operand is
less than or equal to the value of right
operand, if yes then condition
becomes true.

Example

(A == B) is not true.

(Al=B)is true.

(A= B)is not true.

(A =DB)is true.

(A == B) is not true.

(A ==H8)Is true.

THE BITWISE
OPERATORS

Bitwise operator works
on bits and performs
bit-by-bit operation.

Assume integer
variable A holds 60
and variable B holds
13 then —

Operator

& (bitwise and)

| {bitwise or)

~ (bitwise XOR)

~ (bitwise

compliment)

== (left shift)

== (right shift)

=== (Zero Till right
shift)

Description

Binary AND Operator copies a bit to the
result if it exists in both operands.

Binary OR Operator copies a bit if it
exists in either operand.

Binary XOR Operator copies the bit if it
is set in one operand but not both.

Binary Ones Complement Operator is

unary and has the effect of 'flipping’ bits.

Binary Left Shift Operator. The left
operands value is moved left by the
number of bits specified by the right
operand.

Binary Right Shift Operator. The left
operands value is moved right by the
number of bits specified by the right
operand.

Shift right zero fill operator. The left
operands value is moved right by the
number of bits specified by the right
operand and shifted values are filled up
with zeros.

Example

(A& B) will give 12 which
iz OOD0 1100

(A] B)Y will give 61 which
is 0011 1101

(A BY will give 42 which
is 0011 0001

(~A) will give -61 which is
1100 0011 in 2's
complemeant form due to a
signed binary number.

A=< 2 will give 240 which
is 1111 0000

A== 2 will give 153 which
is 1111

A ===2 will give 15 which
iz DOOD 1111

THE LOGICAL OPERATORS

Operator

Assume Boolean variables A
holds true and variable B && (logical and)
holds false, then -

| (logical or)

| (logical nof)

Description

Called Logical AND operator. If both the
operands are non-zero, then the condition
becomes frue.

Called Logical OR Operator. If any of the two
operands are non-zero, then the condition
becomes true.

Called Logical NOT Operator. Use to reverses
the logical state of its operand. If a condition is

true then Logical NOT operator will make false.

Example

(AR&B) is false

(A|lB)is true

A &&B) s frue

Operator Description Example

_ Simple assignment operator. Assigns values from right C = A+ B will assign value of A+ B into C

side operands to left side operand.

T H E Add AND assignment operator. It adds right operand to . .
+= C+=Als equivalentto C=C +A
the left operand and assign the result to left operand. q

A SS I G N M E N T Subtract AND assignment operator. It subftracts right

-= operand from the left operand and assign the result to C-=Ais equivalentto T =C-A
OPERATORS
Multiply AND assignment operator. [t multiplies right
= operand with the left operand and assign the result to C =Alsequivalentto C=C* A

left operand.

/= Divide AND assignment operator. It divides left operand
with the right operand and assign the result to left C/=Alsequivalentto C=C /A
operand.

Modulus AND assignment operator. It takes modulus

%o= using two operands and assign the resuli to left C %= Ais equivalentto C=C % A
operand.

== Left shift AND assignment operator. C===2issameas C=0C==2

=== Right shift AMD assignment operator. Ce===2issameas C=C==2

&= Bitwise AMND assignment operator. C&=2issameasC=C &2

= bitwise exclusive OR and assignment operator. Chi=2issameas C=CM2

= bitwise inclusive OR and assignment operator. Cl=2issameasC=0C|2

EXPLICIT TYPE CAST

When one real number is divided by another, the result is a real
number; for example:
double x = 5.2, y = 2.0, z;
z=x/vy; /[result is 2.6

When dividing integers, we get an integer result

For example:
intx=4,y=9, z;

z=x/2; /[result is 2
z=y/x; /[result is 2, again

z=x/y; // resultis O

EXPLICIT TYPE CASTS - EXAMPLES

INtx =2,y =5;
double z;

z = (double)y / z; [/z=2.5
z = (double) (y / 2); I1z=2.0

NO DEMOTIONS IN ASSIGNMENT CONVERSIONS

In Java we are not allowed to “demote” a higher-precision type
value by assigning it to a lower-precision type variable

Instead, we must do an explicit type cast. Some examples:
Int x = 10;
doubley =x; //thisis allowed;y =10.0
X =Y; Il error: can’t demote value to int
y=y/3; /'y now contains 3.3333333333333333

X = (int)y; /[allowed; x =3

VARIABLE

Types of Variables
4
Variable is name of reserved area allocated in memory. Ir
other words, it is a name of memory location. It is a
combination of "vary + able" that means its value can be |
changed.
int data=50;//Here data is variable S
Types of Variables |

There are three types of variables in Java:
local variable

*instance variable
-static variable

https://www.javatpoint.com/java-tutorial

LOCAL VARIABLES

Local variables are declared in methods,
constructors, or blocks.

Local variables are created when the method,
constructor or block is entered and the variable
will be destroyed once it exits the method,
constructor, or block.

Access modifiers cannot be used for local
variables.

Local variables are visible only within the
declared method, constructor, or block.

“Local variables are implemented at stack level
internally.

There i1s no default value for local variables, so
local variables should be declared and an initial
value should be assigned before the first use.

public class Test {
public void pupAge() {
int age = @,
gge = age + 7,
system.out.println{"Puppy 3

=

public static void main{String args[]) {
Test test = new Test(),
test.pupage();

INSTANCE VARIABLES

v'Instance variables are declared in a class, but
outside a method, constructor or any block.

v'When a space is allocated for an object in the
heap;, g slot for each instance variable value is
created.

v'Instance variables are created when an object
IS created with the use of the keyword 'new' and
destroyed when the object is destroyed.

v'Instance variables hold values that must be

referenced by more than one method,

constructor or block, or essential parts of an

tohbjeclts state that must be present throughout
e class.

v'Instance variables can be declared in class
level before or after use.

v"Access modifiers can be given

public class EBEmployee |

public String name;

private double salary;

public Employvese (String emphame)
nams = =mpiame;

H

public wvoid setSalary{double empSal) {
salary = empSal;

name " + name);
" + salary);

public static wvold main{string arg:.[]] {
Employes empOne — new. Eq:ll{:],.EE{ Ransika™);
empOne . setsalary (1268 ;
empone . printempd) ;
¥
k)

CLASS/STATIC VARIABLES

v Class variables also known as static variables are
declared with the static keyword in a class, but outside
a method, constructor or a block.

v"There would only be one copy of each class variable
per class, regardless of how many objects are created
from it.

v’ Static variables are rarely used other than being
declared as constants. Constants are variables that are
declared as public/private, final, and static. Constant
variables never change from their initial value.

v Static variables are stored in the static memory. It is
rare to use static variables other than declared final and
used as either public or private constants.

v'Static variables are created when the program starts
and destroyed when the program stops

h

private static double salary;

public static final 5tring DEPARTMENT = "Development)

public static void main{String args[]) {

}

salary = 1808,

System.out.printIn{DEPARTMENT + "average salary:”

