
Game Playing



Today’s class

• Game playing

– State of the art and resources

– Framework

• Game trees

– Minimax

– Alpha-beta pruning

– Adding randomness



Why study games?

• Clear criteria for success

• Offer an opportunity to study problems involving 

{hostile, adversarial, competing} agents.

• Historical reasons

• Fun

• Interesting, hard problems which require minimal 

“initial structure”

• Games often define very large search spaces

– chess 35100 nodes in search tree, 1040 legal states



State of the art

• How good are computer game players?

– Chess: 

• Deep Blue beat Gary Kasparov in 1997

• Garry Kasparav vs. Deep Junior (Feb 2003): tie!  

• Kasparov vs. X3D Fritz (November 2003): tie! 
http://www.thechessdrum.net/tournaments/Kasparov-X3DFritz/index.html

• Deep Fritz beat world champion Vladimir Kramnik (2006)

– Checkers: Chinook (an AI program with a very large endgame 
database) is the world champion and can provably never be beaten.  
Retired in 1995

– Go: Computer players have finally reached tournament-level play

– Bridge: “Expert-level” computer players exist (but no world champions 
yet!)

• Good places to learn more:

– http://www.cs.ualberta.ca/~games/

– http://www.cs.unimass.nl/icga

http://www.thechessdrum.net/tournaments/Kasparov-X3DFritz/index.html


Chinook

• Chinook is the World Man-Machine Checkers 

Champion, developed by researchers at the University 

of Alberta.

• It earned this title by competing in human tournaments, 

winning the right to play for the (human) world 

championship, and eventually defeating the best players 

in the world. 

• Visit http://www.cs.ualberta.ca/~chinook/  to play a 

version of Chinook over the Internet.

• The developers have fully analyzed the game of 

checkers, and can provably never be beaten 

(http://www.sciencemag.org/cgi/content/abstract/1144079v1)

• “One Jump Ahead: Challenging Human Supremacy in 

Checkers” Jonathan Schaeffer, University of Alberta  

(496 pages, Springer. $34.95, 1998). 

http://www.cs.ualberta.ca/~chinook/
http://www.sciencemag.org/cgi/content/abstract/1144079v1


Typical case

• 2-person game

• Players alternate moves 

• Zero-sum: one player’s loss is the other’s gain

• Perfect information: both players have access to 

complete information about the state of the game.  

No information is hidden from either player.

• No chance (e.g., using dice) involved 

• Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim,  

Othello

• Not: Bridge,  Solitaire, Backgammon, ...



How to play a game

• A way to play such a game is to:

– Consider all the legal moves you can make

– Compute the new position resulting from each move

– Evaluate each resulting position and determine which is 

best

– Make that move

– Wait for your opponent to move and repeat

• Key problems are:

– Representing the “board”

– Generating all legal next boards

– Evaluating a position



Evaluation function

• Evaluation function or static evaluator is used to evaluate 

the “goodness” of a game position.

– Contrast with heuristic search where the evaluation function was a 

non-negative estimate of the cost from the start node to a goal and 

passing through the given node

• The zero-sum assumption allows us to use a single 

evaluation function to describe the goodness of a board with 

respect to both players. 

– f(n)  >> 0: position n good for me and bad for you

– f(n) << 0:  position n bad for me and good for you

– f(n) near 0: position n is a neutral position

– f(n) = +infinity: win for  me

– f(n) = -infinity: win for you  



Evaluation function examples

• Example of an evaluation function for Tic-Tac-Toe: 

f(n) = [# of 3-lengths open for me] - [# of 3-lengths open for you] 

where a 3-length is a complete row, column, or diagonal

• Alan Turing’s function for chess

– f(n) = w(n)/b(n) where w(n) = sum of the point value of white’s pieces 

and b(n) = sum of black’s

• Most evaluation functions are specified as a weighted sum of 

position features:

f(n) = w1*feat1(n) + w2*feat2(n) + ... + wn*featk(n) 

• Example features for chess are piece count,  piece placement, 

squares controlled, etc. 

• Deep Blue had over 8000 features in its evaluation function



Game trees

• Problem spaces for typical games are                                         

represented as trees

• Root node represents the current 

board configuration; player must decide                                                     

the best single move to make next

• Static evaluator function rates a board                                            

position. f(board) = real number with

f>0 “white” (me), f<0 for black (you)

• Arcs represent the possible legal moves for a player 

• If it is my turn to move, then the root is labeled a "MAX" node; 

otherwise it is labeled a "MIN" node, indicating my opponent's turn. 

• Each level of the tree has nodes that are all MAX or all MIN; nodes at 

level i are of the opposite kind from those at level i+1 





Minimax procedure

• Create start node as a MAX node  with current board 

configuration 

• Expand nodes down to some depth (a.k.a. ply) of 

lookahead in the game

• Apply the evaluation function at each of the leaf nodes 

• “Back up” values for each of the non-leaf nodes until a 

value is computed for the root node

– At MIN nodes, the backed-up value is the minimum of the values 

associated with its children. 

– At MAX nodes, the backed-up value is the maximum of the values 

associated with its children. 

• Pick the operator associated with the child node whose 

backed-up value determined the value at the root 





Minimax Algorithm
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Partial Game Tree for Tic-Tac-Toe

• f(n) = +1 if the position is a 

win for X.

• f(n) = -1 if the position is a 

win for O.

• f(n) = 0 if the position is a 

draw.



Minimax Tree
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Alpha-beta pruning

• We can improve on the performance of the minimax 

algorithm through alpha-beta pruning

• Basic idea: “If you have an idea that is surely bad, don't 

take the time to see how truly awful it is.” -- Pat Winston 
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Alpha-beta pruning

• Traverse the search tree in depth-first order 

• At each MAX node n, alpha(n) =  maximum value found so 

far

• At each MIN node n, beta(n) =  minimum value found so far

– Note: The alpha values start at -infinity and only increase, while beta 

values start at +infinity and only decrease. 

• Beta cutoff: Given a MAX node n, cut off the search below n 

(i.e., don’t generate or examine any more of n’s children) if 

alpha(n) >= beta(i) for some MIN node ancestor i of n. 

• Alpha cutoff: stop searching below MIN node n if beta(n) <= 

alpha(i) for some MAX node ancestor i of n. 



Alpha-beta example
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Effectiveness of alpha-beta

• Alpha-beta is guaranteed to compute the same value for the 

root node as computed by minimax, with less or equal 

computation

• Worst case: no pruning, examining bd leaf nodes, where 

each node has b children and a d-ply search is performed 

• Best case: examine only (2b)d/2 leaf nodes. 

– Result is you can search twice as deep as minimax! 

• Best case is when each player’s best move is the first 

alternative generated  

• In Deep Blue, they found empirically that alpha-beta 

pruning meant that the average branching factor at each 

node was about 6 instead of about 35!


