Game Playing



Today’s class

« Game playing
— State of the art and resources
— Framework

« Game trees
— Minimax
— Alpha-beta pruning
— Adding randomness



Why study games?

e Clear criteria for success

 Offer an opportunity to study problems involving
{hostile, adversarial, competing} agents.

e Historical reasons
e Fun

» Interesting, hard problems which require minimal
“initial structure”

« Games often define very large search spaces
— chess 3519 nodes in search tree, 1040 legal states



State of the art

« How good are computer game players?

— Chess:
» Deep Blue beat Gary Kasparov in 1997
« Garry Kasparav vs. Deep Junior (Feb 2003): tie!

« Kasparov vs. X3D Fritz (November 2003): tie!
http://www.thechessdrum.net/tournaments/Kasparov-X3DFritz/index.html

» Deep Fritz beat world champion Vladimir Kramnik (2006)

— Checkers: Chinook (an Al program with a very large endgame
database) is the world champion and can provably never be beaten.
Retired in 1995

— Go: Computer players have finally reached tournament-level play
— Bridge: “Expert-level” computer players exist (but no world champions
yet!)
« (Good places to learn more:
— http://www.cs.ualberta.ca/~games/
— http://www.cs.unimass.nl/icga



http://www.thechessdrum.net/tournaments/Kasparov-X3DFritz/index.html

The board set for play

Chinook

Chinook is the World Man-Machine Checkers
Champion, developed by researchers at the University
of Alberta.

It earned this title by competing in human tournaments,
winning the right to play for the (human) world
championship, and eventually defeating the best players
in the world.

Visit http://www.cs.ualberta.ca/~chinook/ to play a
version of Chinook over the Internet.

The developers have fully analyzed the game of
checkers, and can provably never be beaten
(http://www.sciencemag.org/cgi/content/abstract/1144079v1)

“One Jump Ahead: Challenging Human Supremacy in
Checkers” Jonathan Schaeffer, University of Alberta
(496 pages, Springer. $34.95, 1998).



http://www.cs.ualberta.ca/~chinook/
http://www.sciencemag.org/cgi/content/abstract/1144079v1

Typical case

e 2-person game
* Players alternate moves
» Zero-sum: one player’s loss is the other’s gain

 Perfect information: both players have access to
complete information about the state of the game.
No information is hidden from either player.

» No chance (e.g., using dice) involved

« Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim,
Othello

» Not: Bridge, Solitaire, Backgammon, ...



How to play a game

« A way to play such a game is to:
— Consider all the legal moves you can make
— Compute the new position resulting from each move

— Evaluate each resulting position and determine which is
best

— Make that move
— Wait for your opponent to move and repeat

» Key problems are:
— Representing the “board”

— Generating all legal next boards
— Evaluating a position



Evaluation function

 Evaluation function or static evaluator is used to evaluate
the “goodness” of a game position.

— Contrast with heuristic search where the evaluation function was a
non-negative estimate of the cost from the start node to a goal and
passing through the given node

* The zero-sum assumption allows us to use a single
evaluation function to describe the goodness of a board with
respect to both players.

— f(n) >> 0: position n good for me and bad for you

— f(n) << 0: position n bad for me and good for you

— f(n) near O: position n is a neutral position

— f(n) = +infinity: win for me

— f(n) = -infinity: win for you



Evaluation function examples

« Example of an evaluation function for Tic-Tac-Toe:
f(n) = [# of 3-lengths open for me] - [# of 3-lengths open for you]
where a 3-length is a complete row, column, or diagonal

* Alan Turing’s function for chess

— f(n) = w(n)/b(n) where w(n) = sum of the point value of white’s pieces
and b(n) = sum of black’s

« Most evaluation functions are specified as a weighted sum of
position features:
f(n) = w,*feat,(n) + w,*feat,(n) + ... + w, *feat,(n)
« Example features for chess are piece count, piece placement,
squares controlled, etc.

» Deep Blue had over 8000 features in its evaluation function



Game trees

*)

Problem spaces for typical games are o, = X alir ; ;

represented as trees

Root node represents the current MAX 09 o
board configuration; player must decide \
the best single move to make next MIN() x o

Static evaluator function rates a board
position. f(board) = real number with
>0 “white” (me), <0 for black (you) ™"

WKility 0

Arcs represent the possible legal moves for a player

If it is my turn to move, then the root is labeled a "MAX" node;
otherwise it is labeled a "M IN" node, indicating my opponent's turn.

Each level of the tree has nodes that are all MAX or all MIN; nodes at
level i are of the opposite kind from those at level i+1

X|0X

X

be [© be
ol —:
0 [s¢ e

e =1=]=
Lekpl—:



MinMax - Overview

« Search tree
- Squares represent decision states (ie- after a move)
- Branches are decisions (ie- the move)

Start at root

Nodes at end are leaf nodes

Ex: Tic-Tac-Toe (symmetrical positions removed)

+
il T T
AT\ \ VAN
./'/,'/' \\ \ / / | \ .
/"/. xf‘ / \ \ \\ 4 1 \ A\\
o B (B BHEY B B {40 [ =% ECE JELE JEEE

* Unlike binary trees can have any number of children
- Depends on the game situation
* Levels usually called plies (a ply is one level)
- Each ply is where "turn" switches to other player
« Players called Minand Max (next)



Minimax procedure

e Create start node as a MAX node with current board
configuration

« Expand nodes down to some depth (a.k.a. ply) of
lookahead in the game

» Apply the evaluation function at each of the leaf nodes

 “Back up” values for each of the non-leaf nodes until a
value Is computed for the root node

— At MIN nodes, the backed-up value is the minimum of the values
associated with its children.

— At MAX nodes, the backed-up value is the maximum of the values
associated with its children.
» Pick the operator associated with the child node whose
backed-up value determined the value at the root



Minimax

R (2) |
B ».
! 2} (3

) @) (D) 3)E)




*
.

Minimax Algorithm

ART KRN

[ This is the move 1 , .

Static evaluator selected by minimax\:
value

@ vin “. 2471 8




Max




Minimax
Picking my best move against your best move

minimax(s) =

ity(s if inal(s)
MaXa¢ action(s) Minimax(result(s, a)) if player(s) = MAX
MiR ac action(s) Minimax(result(s, a))  if player{s} = MIN



Partial Game Tree for Tic-Tac-Toe

MAX (%)
X X X
MIN (O) X X X
X x X
X0 x O X
MAX (%) 0
« f(n) = +1 if the position is a
10X [0 X0
MRE) i : win for X.
\ « f(n) = -1 if the positionis a
| | | win for O.
HAL AL AN ALOIRA ALV R ] o ]
TERMI O|X 0|0 X = ° —
ol Xzl Kalo f(n) = 0 if the position is a
Ulty ‘ 0 + draw.



Minimax Tree

ful &4

ful |

3 12
\ value computed
f value by minimax



Minimax

Discussion

» Complete depth first exploration

» Depth m with b legal moves. O(b™)

» Space complexity (memory) O(bm)

» Chess: m~ 35; on average:50 < b < 100

» Impractical for most games, but basis of other algs.




max(position, depth, maximizingPlayer)
= 0 or game over 1in |
tatic evaluation of position

ingPlayer

= -infinity

| child of ; ion

= minimax(child, depth - 1, false)
al = max(maxEval, eval)

1axEval

= +infinity

1 child of po: 101

= minimax(child, depth - 1, true)
al = min(minEval, eval)

1inEval

alally

min Al

(3, 3) (




Alpha-beta pruning

» We can improve on the performance of the minimax
algorithm through alpha-beta pruning

 Basic idea: “If you have an idea that is surely bad, don't
take the time to see how truly awful it is.” -- Pat Winston

MAX
 We don’t need to compute

the value at this node.

MIN Coe . ,
« No matter what it 1s, it can’t

affect the value of the root

MAX node.




Alpha-beta pruning

 Traverse the search tree in depth-first order

» At each MAX node n, alpha(n) = maximum value found so
far

« At each MIN node n, beta(n) = minimum value found so far

— Note: The alpha values start at -infinity and only increase, while beta
values start at +infinity and only decrease.

 Beta cutoff: Given a MAX node n, cut off the search below n
(i.e., don’t generate or examine any more of n’s children) if
alpha(n) >= beta(i) for some MIN node ancestor i of n.

* Alpha cutoff: stop searching below MIN node n if beta(n) <=
alpha(i) for some MAX node ancestor i of n.



Alpha-beta example
MAX A 3

AAA Z




- Alpha—Beta prunning

Two values:
» a = value of best choice so far for MAX (highest-value)
» [ = value of best choice so far for MIN (lowest-value)
» Each node keeps track of its [«, 5] values



Alpha-Beta Prunning
Properties

» Prunning does not affect final outcome

» Sorting moves by result improves a — 3 performance
» Perfect ordering: O(b?)

» An exercise on meta\'easonlng



A







A

A




((position, depth, , beta, maximizingPlayer)
or game over in position
-ic evaluation of position

Player
-infinity
1ild of position
inimax(child, depth - 1, , beta, false)
= max(maxEval, eval)
max ( , eval)
<=
sval
a =
Finfinity =
111d of position
inimax(child, depth - 1, , beta, true)

= min(minEval, eval)
in(beta, eval)
<=

sval

1 1
el

ntPosition, 3, , +0, true)



Effectiveness of alpha-beta

 Alpha-beta is guaranteed to compute the same value for the
root node as computed by minimax, with less or equal
computation

 Worst case: no pruning, examining b leaf nodes, where
each node has b children and a d-ply search is performed

* Best case: examine only (2b)%2 leaf nodes.
— Result is you can search twice as deep as minimax!

 Best case 1s when each player’s best move 1s the first
alternative generated

* In Deep Blue, they found empirically that alpha-beta
pruning meant that the average branching factor at each
node was about 6 instead of about 35!



