# **Game Playing**

### **Today's class**

- Game playing
  - State of the art and resources
  - Framework
- Game trees
  - Minimax
  - Alpha-beta pruning
  - Adding randomness

# Why study games?

- Clear criteria for success
- Offer an opportunity to study problems involving {hostile, adversarial, competing} agents.
- Historical reasons
- Fun
- Interesting, hard problems which require minimal "initial structure"
- Games often define very large search spaces
   chess 35<sup>100</sup> nodes in search tree, 10<sup>40</sup> legal states

### **State of the art**

- How good are computer game players?
  - Chess:
    - Deep Blue beat Gary Kasparov in 1997
    - Garry Kasparav vs. Deep Junior (Feb 2003): tie!
    - Kasparov vs. X3D Fritz (November 2003): tie! <u>http://www.thechessdrum.net/tournaments/Kasparov-X3DFritz/index.html</u>
    - Deep Fritz beat world champion Vladimir Kramnik (2006)
  - Checkers: Chinook (an AI program with a *very large* endgame database) is the world champion and can provably never be beaten. Retired in 1995
  - Go: Computer players have finally reached tournament-level play
  - Bridge: "Expert-level" computer players exist (but no world champions yet!)
- Good places to learn more:
  - http://www.cs.ualberta.ca/~games/
  - http://www.cs.unimass.nl/icga

### Chinook

- Chinook is the World Man-Machine Checkers Champion, developed by researchers at the University of Alberta.
- It earned this title by competing in human tournaments, winning the right to play for the (human) world championship, and eventually defeating the best players in the world.
- Visit <u>http://www.cs.ualberta.ca/~chinook/</u> to play a version of Chinook over the Internet.
- The developers have fully analyzed the game of checkers, and can provably *never* be beaten (<u>http://www.sciencemag.org/cgi/content/abstract/1144079v1</u>)
- "One Jump Ahead: Challenging Human Supremacy in Checkers" Jonathan Schaeffer, University of Alberta (496 pages, Springer. \$34.95, 1998).

The board set for play



Red to play



# **Typical case**

- 2-person game
- Players alternate moves
- Zero-sum: one player's loss is the other's gain
- **Perfect information**: both players have access to complete information about the state of the game. No information is hidden from either player.
- No chance (e.g., using dice) involved
- Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim, Othello
- Not: Bridge, Solitaire, Backgammon, ...

# How to play a game

- A way to play such a game is to:
  - Consider all the legal moves you can make
  - Compute the new position resulting from each move
  - Evaluate each resulting position and determine which is best
  - Make that move
  - Wait for your opponent to move and repeat
- Key problems are:
  - Representing the "board"
  - Generating all legal next boards
  - Evaluating a position

### **Evaluation function**

- Evaluation function or static evaluator is used to evaluate the "goodness" of a game position.
  - Contrast with heuristic search where the evaluation function was a non-negative estimate of the cost from the start node to a goal and passing through the given node
- The zero-sum assumption allows us to use a single evaluation function to describe the goodness of a board with respect to both players.
  - $-\mathbf{f}(\mathbf{n}) >> \mathbf{0}$ : position n good for me and bad for you
  - $-\mathbf{f}(\mathbf{n}) \ll \mathbf{0}$ : position n bad for me and good for you
  - f(n) near 0: position n is a neutral position
  - $-\mathbf{f}(\mathbf{n}) = +\mathbf{infinity}$ : win for me
  - $\mathbf{f}(\mathbf{n}) = -\mathbf{infinity}$ : win for you

### **Evaluation function examples**

- Example of an evaluation function for Tic-Tac-Toe: f(n) = [# of 3-lengths open for me] - [# of 3-lengths open for you] where a 3-length is a complete row, column, or diagonal
- Alan Turing's function for chess
  - f(n) = w(n)/b(n) where w(n) = sum of the point value of white's pieces and b(n) = sum of black's
- Most evaluation functions are specified as a weighted sum of position features:

 $f(n) = w_1^* feat_1(n) + w_2^* feat_2(n) + ... + w_n^* feat_k(n)$ 

- Example features for chess are piece count, piece placement, squares controlled, etc.
- Deep Blue had over 8000 features in its evaluation function

#### **Game trees**

- Problem spaces for typical games are represented as trees
- Root node represents the current board configuration; player must decide the best single move to make next
- Static evaluator function rates a board position. f(board) = real number with f>0 "white" (me), f<0 for black (you)</li>
- Arcs represent the possible legal moves for a player
- If it is **my turn** to move, then the root is labeled a "**MAX**" node; otherwise it is labeled a "**MIN**" node, indicating **my opponent's turn**.
- Each level of the tree has nodes that are all MAX or all MIN; nodes at level i are of the opposite kind from those at level i+1



### MinMax - Overview

- Search tree
  - Squares represent decision states (ie- after a move)
  - Branches are decisions (ie- the move)
  - Start at root
  - Nodes at end are leaf nodes
  - Ex: Tic-Tac-Toe (symmetrical positions removed)



- Unlike binary trees can have any number of children
  - Depends on the game situation
- Levels usually called plies (a ply is one level)
  - Each ply is where "turn" switches to other player
- Players called Min and Max (next)

### **Minimax procedure**

- Create start node as a MAX node with current board configuration
- Expand nodes down to some **depth** (a.k.a. **ply**) of lookahead in the game
- Apply the evaluation function at each of the leaf nodes
- "Back up" values for each of the non-leaf nodes until a value is computed for the root node
  - At MIN nodes, the backed-up value is the minimum of the values associated with its children.
  - At MAX nodes, the backed-up value is the maximum of the values associated with its children.
- Pick the operator associated with the child node whose backed-up value determined the value at the root



#### **Minimax Algorithm**





#### Minimax Picking my best move against your best move



#### minimax(s) =

utility(s)  $\max_{a \in action(s)} \min(x) = MAX \\ \min_{a \in action(s)} \min(x) = min(s) \\ \min(x) = min$ 

if terminal(s) if player(s) = MAX

#### **Partial Game Tree for Tic-Tac-Toe**



#### **Minimax Tree**



- Complete depth first exploration
- Depth m with b legal moves. O(b<sup>m</sup>)
- Space complexity (memory) O(bm)
- Chess:  $m \approx 35$ ; on average:  $50 \le b \le 100$
- Impractical for most games, but basis of other algs.

max(position, depth, maximizingPlayer)
= 0 or game over in position
static evaluation of position

ingPlayer
= -infinity
child of position
= minimax(child, depth - 1, false)
al = max(maxEval, eval)
maxEval

```
= +infinity
child of position
= minimax(child, depth - 1, true)
al = min(minEval, eval)
minEval
```

11
ntPosition, 3, true)



### **Alpha-beta pruning**

- We can improve on the performance of the minimax algorithm through **alpha-beta pruning**
- Basic idea: *"If you have an idea that is surely bad, don't take the time to see how truly awful it is."* -- Pat Winston



- We don't need to compute the value at this node.
- No matter what it is, it can't affect the value of the root node.

### **Alpha-beta pruning**

- Traverse the search tree in depth-first order
- At each MAX node n, alpha(n) = maximum value found so far
- At each MIN node n, beta(n) = minimum value found so far
  Note: The alpha values start at -infinity and only increase, while beta
  - values start at +infinity and only decrease.
- Beta cutoff: Given a MAX node n, cut off the search below n (i.e., don't generate or examine any more of n's children) if alpha(n) >= beta(i) for some MIN node ancestor i of n.
- Alpha cutoff: stop searching below MIN node n if beta(n) <= alpha(i) for some MAX node ancestor i of n.

#### Alpha-beta example



#### Alpha–Beta prunning

Two values:

- \alpha = value of best choice so far for MAX (highest-value)
- ▶  $\beta$  = value of best choice so far for MIN (lowest-value)
- Each node keeps track of its [α, β] values

- Prunning does not affect final outcome
- Sorting moves by result improves  $\alpha \beta$  performance
- Perfect ordering: O(b<sup>m/2</sup>)
- An exercise on metareasoning









### **Effectiveness of alpha-beta**

- Alpha-beta is guaranteed to compute the same value for the root node as computed by minimax, with less or equal computation
- Worst case: no pruning, examining b<sup>d</sup> leaf nodes, where each node has b children and a d-ply search is performed
- **Best case:** examine only (2b)<sup>d/2</sup> leaf nodes.
  - Result is you can search twice as deep as minimax!
- **Best case** is when each player's best move is the first alternative generated
- In Deep Blue, they found empirically that alpha-beta pruning meant that the average branching factor at each node was about 6 instead of about 35!