
Game Playing

Today’s class

• Game playing

– State of the art and resources

– Framework

• Game trees

– Minimax

– Alpha-beta pruning

– Adding randomness

Why study games?

• Clear criteria for success

• Offer an opportunity to study problems involving

{hostile, adversarial, competing} agents.

• Historical reasons

• Fun

• Interesting, hard problems which require minimal

“initial structure”

• Games often define very large search spaces

– chess 35100 nodes in search tree, 1040 legal states

State of the art

• How good are computer game players?

– Chess:

• Deep Blue beat Gary Kasparov in 1997

• Garry Kasparav vs. Deep Junior (Feb 2003): tie!

• Kasparov vs. X3D Fritz (November 2003): tie!
http://www.thechessdrum.net/tournaments/Kasparov-X3DFritz/index.html

• Deep Fritz beat world champion Vladimir Kramnik (2006)

– Checkers: Chinook (an AI program with a very large endgame
database) is the world champion and can provably never be beaten.
Retired in 1995

– Go: Computer players have finally reached tournament-level play

– Bridge: “Expert-level” computer players exist (but no world champions
yet!)

• Good places to learn more:

– http://www.cs.ualberta.ca/~games/

– http://www.cs.unimass.nl/icga

http://www.thechessdrum.net/tournaments/Kasparov-X3DFritz/index.html

Chinook

• Chinook is the World Man-Machine Checkers

Champion, developed by researchers at the University

of Alberta.

• It earned this title by competing in human tournaments,

winning the right to play for the (human) world

championship, and eventually defeating the best players

in the world.

• Visit http://www.cs.ualberta.ca/~chinook/ to play a

version of Chinook over the Internet.

• The developers have fully analyzed the game of

checkers, and can provably never be beaten

(http://www.sciencemag.org/cgi/content/abstract/1144079v1)

• “One Jump Ahead: Challenging Human Supremacy in

Checkers” Jonathan Schaeffer, University of Alberta

(496 pages, Springer. $34.95, 1998).

http://www.cs.ualberta.ca/~chinook/
http://www.sciencemag.org/cgi/content/abstract/1144079v1

Typical case

• 2-person game

• Players alternate moves

• Zero-sum: one player’s loss is the other’s gain

• Perfect information: both players have access to

complete information about the state of the game.

No information is hidden from either player.

• No chance (e.g., using dice) involved

• Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim,

Othello

• Not: Bridge, Solitaire, Backgammon, ...

How to play a game

• A way to play such a game is to:

– Consider all the legal moves you can make

– Compute the new position resulting from each move

– Evaluate each resulting position and determine which is

best

– Make that move

– Wait for your opponent to move and repeat

• Key problems are:

– Representing the “board”

– Generating all legal next boards

– Evaluating a position

Evaluation function

• Evaluation function or static evaluator is used to evaluate

the “goodness” of a game position.

– Contrast with heuristic search where the evaluation function was a

non-negative estimate of the cost from the start node to a goal and

passing through the given node

• The zero-sum assumption allows us to use a single

evaluation function to describe the goodness of a board with

respect to both players.

– f(n) >> 0: position n good for me and bad for you

– f(n) << 0: position n bad for me and good for you

– f(n) near 0: position n is a neutral position

– f(n) = +infinity: win for me

– f(n) = -infinity: win for you

Evaluation function examples

• Example of an evaluation function for Tic-Tac-Toe:

f(n) = [# of 3-lengths open for me] - [# of 3-lengths open for you]

where a 3-length is a complete row, column, or diagonal

• Alan Turing’s function for chess

– f(n) = w(n)/b(n) where w(n) = sum of the point value of white’s pieces

and b(n) = sum of black’s

• Most evaluation functions are specified as a weighted sum of

position features:

f(n) = w1*feat1(n) + w2*feat2(n) + ... + wn*featk(n)

• Example features for chess are piece count, piece placement,

squares controlled, etc.

• Deep Blue had over 8000 features in its evaluation function

Game trees

• Problem spaces for typical games are

represented as trees

• Root node represents the current

board configuration; player must decide

the best single move to make next

• Static evaluator function rates a board

position. f(board) = real number with

f>0 “white” (me), f<0 for black (you)

• Arcs represent the possible legal moves for a player

• If it is my turn to move, then the root is labeled a "MAX" node;

otherwise it is labeled a "MIN" node, indicating my opponent's turn.

• Each level of the tree has nodes that are all MAX or all MIN; nodes at

level i are of the opposite kind from those at level i+1

Minimax procedure

• Create start node as a MAX node with current board

configuration

• Expand nodes down to some depth (a.k.a. ply) of

lookahead in the game

• Apply the evaluation function at each of the leaf nodes

• “Back up” values for each of the non-leaf nodes until a

value is computed for the root node

– At MIN nodes, the backed-up value is the minimum of the values

associated with its children.

– At MAX nodes, the backed-up value is the maximum of the values

associated with its children.

• Pick the operator associated with the child node whose

backed-up value determined the value at the root

Minimax Algorithm

2 7 1 8

MAX

MIN

2 7 1 8

2 1

2 7 1 8

2 1

2

2 7 1 8

2 1

2This is the move

selected by minimax
Static evaluator

value

Partial Game Tree for Tic-Tac-Toe

• f(n) = +1 if the position is a

win for X.

• f(n) = -1 if the position is a

win for O.

• f(n) = 0 if the position is a

draw.

Minimax Tree

MAX node

MIN node

f value
value computed

by minimax

Alpha-beta pruning

• We can improve on the performance of the minimax

algorithm through alpha-beta pruning

• Basic idea: “If you have an idea that is surely bad, don't

take the time to see how truly awful it is.” -- Pat Winston

2 7 1

=2

>=2

<=1

?

• We don’t need to compute

the value at this node.

• No matter what it is, it can’t

affect the value of the root

node.

MAX

MAX

MIN

Alpha-beta pruning

• Traverse the search tree in depth-first order

• At each MAX node n, alpha(n) = maximum value found so

far

• At each MIN node n, beta(n) = minimum value found so far

– Note: The alpha values start at -infinity and only increase, while beta

values start at +infinity and only decrease.

• Beta cutoff: Given a MAX node n, cut off the search below n

(i.e., don’t generate or examine any more of n’s children) if

alpha(n) >= beta(i) for some MIN node ancestor i of n.

• Alpha cutoff: stop searching below MIN node n if beta(n) <=

alpha(i) for some MAX node ancestor i of n.

Alpha-beta example

3 12 8 2 14 1

3MIN

MAX 3

2 - prune 14 1 - prune

Effectiveness of alpha-beta

• Alpha-beta is guaranteed to compute the same value for the

root node as computed by minimax, with less or equal

computation

• Worst case: no pruning, examining bd leaf nodes, where

each node has b children and a d-ply search is performed

• Best case: examine only (2b)d/2 leaf nodes.

– Result is you can search twice as deep as minimax!

• Best case is when each player’s best move is the first

alternative generated

• In Deep Blue, they found empirically that alpha-beta

pruning meant that the average branching factor at each

node was about 6 instead of about 35!

