
Fundamentals of Testing

Compiled by - Nazmus Sakib Akash

Understanding
Software Testing

The economic importance of software

- The functioning of machines and equipment
depend largely on software.

- We cannot imagine large systems in
telecommunication, finance or traffic control
running without software.

Software quality

- More and more, the quality of software has
become the determining factor for the
success of technical or commercial
systems and products.

Testing for quality improvement

- Testing and reviewing insure the
improvement of the quality of software
products as well as the quality of software
development process itself.

Failure Example 1:
Ariane 5 Launch

Flight 501, which took place on June 4, 1996, was the

first test flight of the Ariane 5 expendable launch

system. It was not successful; the rocket tore itself

apart 37 seconds after launch because of a

malfunction in the in the control software, making the

fault one of the most expensive computer bugs in

history.

The Ariane 5 software reused the specifications* the

Ariane 4, but the Ariane 5’s flight path was

considerably different and beyond the range for which

the reused code had been designed.

Specifically, the Ariane 5’s greater acceleration caused

the back-up and primary inertial guidance computers

to crash, after which the launcher’s nozzles were

directed spurious data.

Pre-flight tests had never been performed on the re-

alignment code under simulated Ariane 5 flight

conditions, so the error was not discovered before

launch.

Failure Example 2:
Lethal X-Rays

Because of a software failure, a number of patients

received a lethal dose of gamma rays.

- Therac-25 was a radiation therapy machine

produced by atomic Energy of Canada Limited.

- It was involved with at least six known

accidents between 1985 and 1987. At least five

patients died of the overdoses.

- These accidents highlighted the dangers of

software control of safety-critical system.

Causes of Software
Failures

Human error

- A defect was introduced into the software code,

the data or the configuration parameters.

Causes of human error:

- Time pressure,

- Excessive demands,

- Complexity distractions.

Environmental conditions

- Changes of environmental conditions.

Causes of negative environmental conditions:

- Radiation,

- Magnetism,

- Electronic field on pollution sun spots,

- Hard disk crashes,

- Power functions.

Definition: Error,
Defect & Failure

Error (IEEE 610):

- A human action that produces an incorrect

result, e.g. a programming error.

Defect:

- A flaw in a component or system to fail to

perform its required function, e.g. an incorrect

statement of data definition.

Failure:

- The physical or functional manifestation of a

defect. A defect, if encountered during

execution, may cause a failure.

- Deviation of the component or system from its

expected delivery, service or result.

“Defects cause failure”

Testing during
Software
Development,
Maintenance &
Operation

Increasing software quality:

- Testing helps to furnish the software with the

desired attributes, i.e. to remove defects leading

to failures.

Reduction of the risk of encountering errors:

- Appropriate test activities will reduce the risk of

errors being encountered during software

operation.

Meeting obligations:

- Tests might be mandatory because of client’s or

legal regulation as well as to meet industrial

standards.

Relative Cost of
Bugs

Cost to fix a bug increases exponentially (10x)

i.e., it increases tenfold as time increases.

Example:

A bug found during specification costs $1 to fix.

… if found in design cost is $10

… if found in code cost is $100

… if found in released software cost is $1000

“Bugs found later cost more to fix”

Definition: Quality,
Software, Software
Quality

Software (as per IEEE 610):

- Computer programs, procedures and possibly

associated documentation and data pertaining

to the operation a computer system.

Quality (as per IEEE 610):

- The degree to which a component, system or

process meets specified requirements and/or

user/customer needs and expectations.

Software Quality (as per IEEE 610):

- The totality of functionality and features of a

software product that contribute to its ability to

satisfy stated or implied needs.

Software Quality
According to ISO/IEC 9126, software quality consists

of:

- Functional Quality Attributes,

- Non-functional Quality Attributes.

Functional Quality

Attributes:

- Accuracy

- Compliance

- Interoperability

- Stability

- Security

Non-functional Quality

Attributes:

- Functionality

- Reliability

- Usability

- Efficiency

- Maintainability

- Portability

Functional Q-
attributes

Functionality means:

- Correctness: the functionality meets the

required attributes / capabilities

- Completeness: the functionality meets

all(functional) requirements

Functionality includes (as per ISO/IEC 9126):

- Suitability,

- Accuracy,

- Interoperability,

- Security.

Non-functional Q-
attributes (I)

Reliability

- Maturity, fault tolerance, recovery after

failure.

Characteristics: Under given conditions, a

software/system will keep its

capabilities/functionality over a period of

time.

- Reliability = quality/time

Usability

- Learn ability, understanding ability,

attractiveness.

Characteristics: Easy to learn, compliance

with guidelines, intuitive handling

Non-functional Q-
attributes (II)

Efficiency

- System behavior: Functionality and time

behavior.

- Characteristics: The system requires a minimal

use of resources (e.g. CPU-time) for executing

the given task

Maintainability

- Verifiability, stability, analyzability, changeability

- Characteristics: Amount of effort needed to

introduce changes in system components

Portability

- Reparability, compliance, install ability.

- Ability to transfer the software to a new

environment (software, hardware, organization)

- Characteristics: Easy to install and uninstall,

parameters

Types of Quality
Assurance (QA):

Constructive activities:

- to prevent defects, e.g. through

appropriate methods of software

engineering.

Analytical activities:

- for finding defects, e.g. through testing

leading to correcting defects and

preventing failures, hence increasing the

software quality.

Constructive
Quality Assurance

Quality of process - Quality management

Motto

- Defects not made , need not be fixed

- Defects that were made need not be

repeated

- Prevent defects

Analytical Quality
Assurance

Quality of product - Verification and test procedure.

Motto

- Defects should be detected early as possible in the
process.

Static testing

- Examination without excluding the program.

Dynamic testing

- Includes executing the program.

Quality Attributes - Some software quality attributes are

influenced reciprocally, Because of this,

depending on the test object, attributes

must be prioritized, e.g. efficiency vs.

portability.

- Different kinds of tests will be performed

in order to measure the different kinds of

attributes .

Test Goals
Gain knowledge about defects in the test objects:

- Defects contained in the test objects must be

detected and be described in such a way as to

facilitate their correction

Poor functionality:

- System functionality should be implemented as

specified

Generating information:

- Before handing over a software system to the

users, information about possible risks has to

be provided. Gaining such information might be

one of the test goals.

Gaining confidence

- Software that has been well tested in trusted to

meet the expected functionality and to have a

high quality level.

How Much Testing
Is Enough?

Exit criteria:

- Not finding (any more) defects is not an

appropriate criterion to stop testing

activities.

- Other metrics are needed to adequately

reflect the quality level reached.

Risk based testing:

- Levels of risk determine the extent of

testing carried out, i.e. liability for

damages in case of failures occurring,

economic and project related aspects.

Time and budget testing:

- The amount of resources available

(personal, time and budget) might

determine the extent of testing efforts.

Test Case, Test
Basis

Test Case: Includes at least the following

information

- Pre-condition

- Set of input values

- Set of expected results

- Expected post conditions

- Unique identifier

- Dependence on other test cases

- Reference to the requirement that will be

tested

- How to execute the test and check results

(optional)

- Priority (optional)

Test Basis: (aka Test Base)

- Set of documents defining the requirements

of a component or system. Used as the basis

for the development of test cases.

Definitions:
Software
Development and
Reviews

Code (aka Source Code):

- A computer program, written in a programming
language, which can be read by human beings.

Debugging:

- Locates and corrects defects in the source code.

Software Development:

- Is a complex process/sequence of activities aiming at
implementing a computer system. It usually follows a
software development model.

Requirement:

- A requirement describes a functional attribute that is
desired or seen as obligatory.

Review (after IEEE 1028):

- Evaluation of a product or project status to find
discrepancies from planned result and to recommend
improvements

Testing and
Debugging

Test and Retest are test activities:

- Testing shows system failures.

- Re-testing proves, that the defect has

been corrected.

Debugging and Correcting defects are

developer activities:

- Through debugging, developers can

reproduce failures, investigate the state

of programs and find the corresponding

defect in order to correct it.

Seven Testing
Principles (I)

Principle 1: Testing shows the presence

of defects.

- Testing can prove the presence of defects.

- Deviations discovered while testing show a

failure.

- The cause of the failure might not be obvious.

- Testing reduces the probability of defects

remaining undiscovered. The absence of

failure does not prove the correctness of the

software.

- The test procedure itself might contain error.

- The test conditions might be unsuitable for

finding errors.

Seven Testing
Principles (II)

Principle 2: Exhaustive testing is not

possible.

Exhaustive testing

- A test approach in which the test suite comprises all

combinations of input values and preconditions.

Test case explosion

- Defines the exponential increase of efforts and

costs when testing exhaustively.

Sample test

- The test includes only a (systematically or randomly

derived) subset of all possible input values

- Under real life conditions, sample tests are generally

used. Testing all combination of inputs and

preconditions is only economically feasible in trivial

cases.

Seven Testing
Principles (III)

Principle 3: Early Testing.

- The earlier a defect is discovered, the less costly is

its correction.

- Highest cost effectiveness when errors are corrected

before implementation

- Concepts and specifications may already be tested.

- Defects discovered at the conception phase are

corrected with the least effort and costs.

- Preparing a test is time consuming as well.

- Testing involves more than just test execution.

- Test activities can be prepared before software

development is completed.

- Testing activities (including reviews) should run in

parallel to software specification and design.

Seven Testing
Principles (IV)

Principle 4: Defect Clustering.

- Find a defect and you will find more defects

nearby.

- Defects often appear clustered like mushrooms

or cockroaches.

- It is worth screening the same module where one

defect was found.

- Testers must be flexible.

- Once a defect is found it is a good idea to

reconsider the direction of further testing.

- The location of a defect might be screened at

higher detail level, e.g. starting additional tests or

modifying existing tests.

Seven Testing
Principles (V)

Principle 5: Pesticide Paradox.

Repeating tests under the same conditions is ineffective.

- Each test case should contain a unique combination

of input parameters for a signal test objects,

otherwise no additional information can be gained.

- If the same tests are repeated over and over again,

no new bugs can be found.

Tests must be revised regularly for different code modules.

- It is necessary to repeat a test after changes have

been made in the code (bug fixing, new

functionality).

- Automating tests can be an advantage if a group of

tests cases is used regularly.

Seven Testing
Principles (VI)

Principle 6: Testing is content dependent.

- Testing is done differently in different contexts

- Different test objects are tested differently.

- The engine controller of a car requires tests

different than those of an ecommerce application

- Test environmental (test bed) vs. production

environment

- Test take place on an environment other than the

production environment. The test environment

should be very similar to the production

environment.

- There will always be deviations between test

environment and the production environment.

These deviations impeach the conclusions

drawn after testing.

Seven Testing
Principles (VII)

Principle 7: Absence of errors fallacy

- Successful testing finds the most serious failure.

- In most cases, testing will find all defects of the

system (see principle 2), but the most serious

defects should be found.

- This alone does not prove the quality of the

software.

- The functionality of the software may not meet

the needs and expectations of the users.

- You can not test quality into the product, it must

be built in from the very beginning!

