
OOP-4

Inheritance in JAVA

Inheritance in Java is a mechanism in which one object acquires all the properties and behaviors of
a parent object.

• The idea behind inheritance in Java is that you can create new classes that are built upon existing
classes. When you inherit from an existing class, you can reuse methods and fields of the parent
class. Moreover, you can add new methods and fields in your current class also.

• Inheritance represents the IS-A relationship which is also known as a parent-child relationship.

Why use inheritance in java

• For Method Overriding (so runtime polymorphism can be achieved).

• For Code Reusability.

Terms used in Inheritance

• Class: A class is a group of objects which have common properties. It is a template or blueprint from
which objects are created.

• Sub Class/Child Class: Subclass is a class which inherits the other class. It is also called a derived class,
extended class, or child class.

• Super Class/Parent Class: Superclass is the class from where a subclass inherits the features. It is also
called a base class or a parent class.

• Reusability: As the name specifies, reusability is a mechanism which facilitates you to reuse the fields
and methods of the existing class when you create a new class. You can use the same fields and
methods already defined in the previous class.

The syntax of Java Inheritance
class Subclass-name extends Superclass-name

{

//methods and fields

}

Java Inheritance Example

class Employee{

float salary=40000;

}

class Programmer extends Employee{

int bonus=10000;

}

public static void main(String args[]){

Programmer p=new Programmer();

System.out.println("Programmer salary is:"+p.salary);

System.out.println("Bonus of Programmer is:"+p.bonus);

}

Types of inheritance in java

Continued…

Single Inheritance Example

• class Animal{

• void eat(){System.out.println("eating...");}

• }

• class Dog extends Animal{

• void bark(){System.out.println("barking...");}

• }

• class TestInheritance{

• public static void main(String args[]){

• Dog d=new Dog();

• d.bark();

• d.eat();

• }}

Multilevel Inheritance Example

• class Animal{

• void eat(){System.out.println("eating...");}

• }

• class Dog extends Animal{

• void bark(){System.out.println("barking...");}

• }

• class BabyDog extends Dog{

• void weep(){System.out.println("weeping...");}

• }

• class TestInheritance2{

• public static void main(String args[]){

• BabyDog d=new BabyDog();

• d.weep();

• d.bark();

• d.eat();

• }}

Hierarchical Inheritance Example

class Animal{

void eat(){System.out.println("eating...");}

}

class Dog extends Animal{

void bark(){System.out.println("barking...");}

}

class Cat extends Animal{

void meow(){System.out.println("meowing...");}

}

class TestInheritance3{

public static void main(String args[]){

Cat c=new Cat();

c.meow();

c.eat();

//c.bark();//C.T.Error

}

}

Why multiple inheritance is not supported in java?

• To reduce the complexity and simplify the language, multiple inheritance is not supported in java.

• Consider a scenario where A, B, and C are three classes. The C class inherits A and B classes. If A
and B classes have the same method and you call it from child class object, there will be
ambiguity to call the method of A or B class.

• Since compile-time errors are better than runtime errors, Java renders compile-time error if you
inherit 2 classes. So whether you have same method or different, there will be compile time error.

Continued…

class A{
void msg(){

System.out.println("Hello");
}

}

class B{
void msg(){

System.out.println("Welcome");
}

}

class C extends A,B{ //suppose if it were

public static void main(String args[]){

C obj=new C();

obj.msg(); //Now which msg() method would be invoked?

}

}

