
Static Techniques
Compiled by - Nazmus Sakib Akash



Chapter III –Static Testing Techniques

-III/01 Reviews and the test process

-III/02 Review process

-III/03 Tool based static analysis



01. Reviews and the test process

Basic Approach

- Static testing techniques summarize 
various methods, that do not 
execute the component or the 
system that is being tested.

Static tests include:

- Review (Manual activity)
- Static analysis (Mostly tool based 

activity)

Static techniques have certain characteristics:

- Static tests find defects rather than failures
- Concepts are inspected as well, not only 

executable code
- Defects / deviations are found in an early 

phases, before they are implemented in the 
code

- Static tests might find defects not found in 
dynamic testing

High quality documents lead to high quality product.

- Even if the reviewed specifications do not 
contain any errors, interpreting the 
specification and creating design could be 
faulty



Review Objectives
- Review are done in order to improve product quality.

- Review are used to verify the correct transition from one phase to the next 
phases, as defined in the left half of the V-model.

- Detecting errors early saves costs

- During reviews, the following error must be detected:

- Errors in the specification
- Errors in the design and architecture
- Errors in the interface specifications
- Deviations from agreed standards 

(e.g. programming guides)



Advantages and Drawbacks of Reviews
Advantages

- Lower costs and a relatively high 
saving potential.

- Errors in documentation are 
detected and corrected early.

- High quality documents improve 
the development process.

- Increase rate of communication/ 
exchange of know-how.

Drawbacks

- Stress may arise if the author is 
confronted directly.

- Experts involved in reviews need to 
attain specific product knowledge, 
good preparation is necessary.

- Considerable time investment (10% 
-15% of the overall budget)

- Moderator/ participants influence 
review quality directly.



02. Reviews process 

Phases of a Review (I)
Planning phases

- Organizing the review, select and supplementary information.

Organizational preparation (and-kick-off)

- Hand out of review objects and supplementary information.

Individual preparation

- Reviewers inspect objects, note item in need of clarification.



Phases of a Review (II)
Review meeting

- Meeting of review members, reviewers present their results

Rework

- Author fixes any defects addressed by inspectors

Follow up

- The review meeting protocol is distributed to the manager, stating object under test, 
participants, roles, recommendation



Roles and responsibilities
(Project-) Manager

- Initiates the review, decides on 
participants and allocates resources

Moderator

- Runs the meeting / the discussion, 
mediates. summarizes

Author

- Exposes himself to the criticism, 
performs recommended changes.

Reviewer (also: inspector or checkers)

- Discover defects, deviations, problem 
areas etc

Scriber (also: recorder)

- Documents all issues, problems and 
open points that were identified



Types of Reviews (EEE 1028) /1
The basic process of a review –as outlined here –applies to the following variants of 
reviews

- Inspection, walkthrough, technical review, informal review
- These variants differ in a few aspects from the general outlined base practice

A further distinction of review is mode depending on the nature of the reviewed object: 
product or process

SW-development processor project process

- CMMI, IEC 12207, IPI are terms relating to process improvement
- Also called management review, these review do not directly interface with the 

testing process, they are not part of this lecture

Documents / products of the development process

- These reviews are addressed here.



Types of Reviews (EEE 1028) /2
Inspection: Key Characteristics

- Formal process based on rules, uses defined roles.

- Review inspect the object under review using checklists and metrics(e.g. problems 
per page)

- A trained, independent moderator is leading the review.

- Review-ability of the object is assessed prior to the review.

- Formal process for preparation, execution, documentation and follow up activities. 



Types of Reviews (EEE 1028) /3

Inspection: Advantages and Drawbacks

- Well organized formal session with clear roles.

- Needs intensive preparation and clear roles.

- Moderator and scribe are necessary.

- Main purpose: finding defects using a structured method.



Types of Reviews (EEE 1028) /4

Walkthrough: Key Characteristics
- There is an optional pre-meeting preparation of the reviewers

- The meeting is led by the author, he explains the object under review

- A separate moderator is not necessary (the author moderates)

- During preparation by the author, the reviews try to locate deviations and / or 
problem areas.

- Example for using walkthroughs
- Walkthroughs of documents
- Walkthroughs of drafts for user interfaces
- Walkthroughs of business process modeling data



Types of Reviews (EEE 1028) /5

Walkthrough: Key Characteristics

- Little effort in preparing a review session, but it is an open-end session.

- Session can be initiated on short term notice.

- Author has a great influence on the outcome: since she/ he moderates the review, 
there is a danger of domination by the author (critical points are not addressed in 
depth)

- Little control possible, since author is also in charge of any follow-up activities.



Types of Reviews (EEE 1028) /6

Technical Review: Key Characteristics
- Target of examination is a technical aspect of the object under review: is it fit for 

use?

- Experts are needed, preferably external experts.

- The meeting might take place without the author.

- The review is done using technical specifications and other documents.

- A unanimous vote of recommendation is given by the expert panel.

- Intensive preparation is needed



Types of Reviews (EEE 1028) /7

Informal Review: Key Characteristics
- Simplest form of reviews

- Often initiated by the author

- Only reviewers (one or more) will be involved

- No separate meeting necessary

- Results may be recorded in form of an action list

- Often performed in such a way that a colleague is asked to review a document

- Also called: peer review



Types of Reviews (EEE 1028) /8

Informal Review: Advantages and Drawbacks

- Easy to perform, even on short term notice.

- Cost effective.

- No protocol needed.



Success Factors of a Review (I)

- Reviews are to be performed goal oriented, i.e. deviation in the reviewed 
object should be started in an unbiased manner.

- The author of the reviewed object should be motivated in a positive 
manner by the review (“your document will be better still” instead of “your 
document is of poor quality”)

- Systematic usages of the introduced technique and templates.

- Using checklists will improve the efficiency of a review.



Success Factors of a Review (II)
- Sufficient budget is needed to perform proper review (10% to 15% of the 

overall development cost)

- Make use of the lesson learned effect, use feedback to implement a 
continuous improvement process

- Duration of review meeting (inspection): 2 hours maximum



Summary

- During static testing, the test object is not executed.
- Review can take place during the early phases of the development 

process, they complement/ extended the methods of dynamic testing
- Phases of a review:

Planning-preparation –individual preparation –meeting –follow up
- Roles and takes for the Review:

Manager –Moderator –Author –Reviewer –Scribe
- Types of reviews:

Inspection –Walkthrough –Technical review –Informal review



03 –Tool Based Static Analysis

Terminology and Definitions

- Static analysis (Definition):

Static analysis is the task of analyzing a test object (e.g. source code, script, 
requirement) without executing the test object.

- Possible aspect to be checked with static analysis are:
- programming rules and standards
- program design (control flow analysis)
- use of data (data flow analysis)
- complexity of the program structure (metrics, e.g. the cycloramic number)



General Aspects /1

- All test objects must have a formal structure

- This is especially important when using testing tools.
- Very often documents are not generated formally.
- In practice, modeling, programming and scripting languages comply 

to the rule, some diagrams as well.
- The tool-based static analysis of a programmed with less effort than 

an inspection.
- Therefore, very often a static analysis is performed before a review 

takes place.



General Aspects /2

- Tools to be used are compilers and analyzing tools (analyzer)

- Compiler

- detect syntax errors inside a program source code
- create reference data of the program (e.g. cross reference list, call hierarchy, symbol table) 

of the program
- check for consistency between types of variables
- find undeclared variables and unreachable (dead) code

- Analyzer address additional aspects, such as

- conventions and standards
- metrics of complexity
- object coupling



Control Flow Analysis /1

Aim

- To find defects caused by wrong construction of 
the program code (dead branches, dead code etc.

Method

- Code structure is represented as a control flow 
graph.

- Directed graph
- Nodes represent statements or sequences of 

statements.
- Edges represent control flow transfer, as in 

decisions and loops.
- Tools based construction.



Control Flow Analysis /2

- Result

- Easy understandable overview of 
program code

- A control flow graph is just a 
simplified version of flow chart

- Anomalies* can easily be detected, 
defects stick out

- loops exited by jumps
- dead branches
- multiple returns

* Anomalies: an irregularity of inconsistency



Data Flow Analysis /1

Aim:

- To discover data flow anomalies with help of control flow graph and sensible 
assumption of data flow sequences.

Benefits:

- Reliable detection of data flow anomalies.
- Exact location of errors can be determined easily.
- A good supplement for other testing methods.

Drawbacks:

- Limited to a narrow range of error types.



Data Flow Analysis /2 – Method

A variable x may have the following different stages during program execution:

- x is undefined (u): no value is assigned to x
- x is defined (d): a value is assigned to x (e.g. x = 1)
- x is referenced (r): a reference is taken, the value of x does not change (e.g. if (x>0 or a=b+x)

The data flow of a variable can be expressed as a sequence of the states: d, u, and r, 
e.g. x-> u d r d r r u

If one of these sequence contain a sub sequence which does not make sense, a data flow 
anomaly is identified:

ur–anomaly: undefined value gets referenced

du–anomaly: defined value gets undefined before reading

dd–anomaly: defined value gets defined again before reading



Data Flow Analysis /3

The data flow analysis shows:

- Variable Help is still 
undefined when it gets 
referenced: ur-anomaly

- Variable Max gets defined 
twice without any 
reference in between: 
dd-anomaly

- Defined value for Help gets 
undefined (program ends) 
without reference: du- 
anomaly

This example can be 
corrected easily:

void MinMax(intMin, intMax){
IntHelp:

If (Min > Max){
Max = Help;
Max = Min;
Help = Min;

}

End MinMax

}



Metrics and Their Computation

Using Metrics, certain aspect of program quality can be measured

- The metric has only relevance for the measured aspect

The static complexity of the program can be measured

- Currently, there are about 100 different metrics available

Different metrics address different aspects of program complexity

- program size (e.g. Lines of Code -LOC)
- program control structure ( e.g. cyclomatic number)
- data control structures (e.g. Halstead-Metric)

It is difficult to compare different metrics, even if they address the same attribute of the 
program !



Metrics and Their Implementation /1

Cyclomatic Number v(G)
- Metric to measure the static complexity of a program 

based on its control flow graph
- Measure linear independent program paths, as an 

indication for testability and maintainability
- The cyclomatic number is made up of 

- Number of edges e
- Number of nodes n
- Number of inspected independent 

program parts p (mostly 1)

Values up to 10 are acceptable. Beyond this, code should 
be reworked/improved (best practice, McCabe)



Metrics and Their Implementation /2

Example III/03-2 (Cyclomatic Number)

- the number to the right has
- 1 program part:    p = 1
- 15 nodes: n = 15
- 20 edges: e = 20

The number to a cyclomatic number of

v (G) = e-n+2p

v(G)=7



Metrics and Their Implementation /3

Cyclomatic Number (by McCabe) - Implication

- The cyclomatic number can be used as a target value for code reviews.

- The cyclomatic number can also be calculated as the number of 
independent decisions plus one. If both ways of calculation give different 
results, it may be due to

- A superfluous branch
- A missing branch

The cyclomatic number also gives as indication for the number of necessary 
test cases (to achieve decision coverage)


