Static Techniques
Compiled by - Nazmus Sakib Akash

Chapter lll -Static Testing Techniques

-111/01 Reviews and the test process
-111/02 Review process

-111/03 Tool based static analysis

01. Reviews and the test process

Basic Approach Static techniques have certain characteristics:

- Static tests find defects rather than failures
- Concepts are inspected as well, not only
executable code

- Static testing techniques summarize
various methods, that do not

execute the component or the - Defects / deviations are found in an early
system that is being tested. phases, before they are implemented in the
code
Static tests include: - Static tests might find defects not found in

. .. dynamic testing
- Review (Manual activity)

- Static analysis (Mostly tool based High quality documents lead to high quality product.

activity) - Even if the reviewed specifications do not
contain any errors, interpreting the
specification and creating design could be
faulty

Review Objectives

- Review are done in order to improve product quality.

- Review are used to verify the correct transition from one phase to the next

phases, as defined in the left half of the V-model.
- Detecting errors early saves costs
- During reviews, the following error must be detected:

- Errorsin the specification

- Errorsin the design and architecture

- Errorsin the interface specifications

- Deviations from agreed standards
(e.g. programming guides)

Functional
system design

Technical

System design

Component

specification

programming

Advantages and Drawbacks of Reviews

Advantages

Lower costs and a relatively high
saving potential.

Errors in documentation are
detected and corrected early.

High quality documents improve
the development process.

Increase rate of communication/
exchange of know-how.

Drawbacks

Stress may arise if the author is
confronted directly.

Experts involved in reviews need to
attain specific product knowledge,
good preparation is necessary.

Considerable time investment (10%
-15% of the overall budget)

Moderator/ participants influence
review quality directly.

02. Reviews process

Phases of a Review (I)

Planning phases

- Organizing the review, select and supplementary information.
Organizational preparation (and-kick-off)

- Hand out of review objects and supplementary information.
Individual preparation

- Reviewers inspect objects, note item in need of clarification.

Phases of a Review (II)

Review meeting

- Meeting of review members, reviewers present their results
Rework

- Author fixes any defects addressed by inspectors
Follow up

- The review meeting protocol is distributed to the manager, stating object under test,
participants, roles, recommendation

Roles and responsibilities

(Project-) Manager Reviewer (also: inspector or checkers)
- Initiates the review, decides on - Discover defects, deviations, problem
participants and allocates resources areas etc
Moderator Scriber (also: recorder)
- Runs the meeting / the discussion, - Documents all issues, problems and
mediates. summarizes open points that were identified
Author

- Exposes himself to the criticism,
performs recommended changes.

Types of Reviews (EEE 1028) /1
The basic process of a review -as outlined here —applies to the following variants of
reviews

- Inspection, walkthrough, technical review, informal review
- These variants differ in a few aspects from the general outlined base practice

A further distinction of review is mode depending on the nature of the reviewed object:
product or process

SW-development processor project process

- CMMI, IEC 12207, IPIl are terms relating to process improvement
- Also called management review, these review do not directly interface with the
testing process, they are not part of this lecture

Documents / products of the development process

- These reviews are addressed here.

Types of Reviews (EEE 1028) /2

Inspection: Key Characteristics

- Formal process based on rules, uses defined roles.

- Review inspect the object under review using checklists and metrics(e.g. problems
per page)

- Atrained, independent moderator is leading the review.

- Review-ability of the object is assessed prior to the review.

- Formal process for preparation, execution, documentation and follow up activities.

Types of Reviews (EEE 1028) /3

Inspection: Advantages and Drawbacks

- Well organized formal session with clear roles.
- Needs intensive preparation and clear roles.
- Moderator and scribe are necessary.

- Main purpose: finding defects using a structured method.

Types of Reviews (EEE 1028) /4

Walkthrough: Key Characteristics

- Thereis an optional pre-meeting preparation of the reviewers
- The meetingis led by the author, he explains the object under review
- A separate moderator is not necessary (the author moderates)

- During preparation by the author, the reviews try to locate deviations and / or
problem areas.

- Example for using walkthroughs
- Walkthroughs of documents
- Walkthroughs of drafts for user interfaces
- Walkthroughs of business process modeling data

Types of Reviews (EEE 1028) /5

Walkthrough: Key Characteristics

Little effort in preparing a review session, but it is an open-end session.
- Session can be initiated on short term notice.

- Author has a great influence on the outcome: since she/ he moderates the review,
there is a danger of domination by the author (critical points are not addressed in
depth)

- Little control possible, since author is also in charge of any follow-up activities.

Types of Reviews (EEE 1028) /6

Technical Review: Key Characteristics

- Target of examination is a technical aspect of the object under review: is it fit for
use?

- Experts are needed, preferably external experts.

- The meeting might take place without the author.

- Thereview is done using technical specifications and other documents.
- Aunanimous vote of recommendation is given by the expert panel.

- Intensive preparation is needed

Types of Reviews (EEE 1028) /7

Informal Review: Key Characteristics

- Simplest form of reviews

Often initiated by the author

- Only reviewers (one or more) will be involved

- No separate meeting necessary

- Results may be recorded in form of an action list

- Often performed in such a way that a colleague is asked to review a document

- Also called: peer review

Types of Reviews (EEE 1028) /8

Informal Review: Advantages and Drawbacks

- Easy to perform, even on short term notice.
- Cost effective.

- No protocol needed.

Success Factors of a Review ()

- Reviews are to be performed goal oriented, i.e. deviation in the reviewed
object should be started in an unbiased manner.

- The author of the reviewed object should be motivated in a positive
manner by the review (“your document will be better still” instead of “your
document is of poor quality”)

- Systematic usages of the introduced technique and templates.

- Using checklists will improve the efficiency of a review.

Success Factors of a Review (ll)

- Sufficient budget is needed to perform proper review (10% to 15% of the
overall development cost)

- Make use of the lesson learned effect, use feedback to implement a
continuous improvement process

- Duration of review meeting (inspection): 2 hours maximum

Summary

- During static testing, the test object is not executed.

- Review can take place during the early phases of the development
process, they complement/ éxtendedthe methods of dynamic testing

- Phases of areview:

Planning-preparation -individual preparation -meeting -follow up
- Roles and takes for the Review:

Manager -Moderator —Author -Reviewer -Scribe
- Types of reviews:

Inspection -Walkthrough -Technical review -Informal review

03 -Tool Based Static Analysis

Terminology and Definitions

- Static analysis (Definition):
Static analysis is the task of analyzing a test object (e.g. source code, script,

requirement) without executing the test object.

- Possible aspect to be checked with static analysis are:
- programming rules and standards
- program design (control flow analysis)
- use of data (data flow analysis)
- complexity of the program structure (metrics, e.g. the cycloramic number)

General Aspects /1
- All test objects must have a formal structure

- Thisis especially important when using testing tools.

- Very often documents are not generated formally.

- In practice, modeling, programming and scripting languages comply
to the rule, some diagrams as well.

- The tool-based static analysis of a programmed with less effort than
an inspection.

- Therefore, very often a static analysis is performed before a review
takes place.

General Aspects /2

- Tools to be used are compilers and analyzing tools (analyzer)
- Compiler

- detect syntax errors inside a program source code

- create reference data of the program (e.g. cross reference list, call hierarchy, symbol table)
of the program

- check for consistency between types of variables

- find undeclared variables and unreachable (dead) code

- Analyzer address additional aspects, such as
- conventions and standards

- metrics of complexity
- object coupling

Control Flow Analysis /1

Aim

- Tofind defects caused by wrong construction of
the program code (dead branches, dead code etc.

Method

- Code structure is represented as a control flow
graph.
- Directed graph
- Nodes represent statements or sequences of
statements.
- Edges represent control flow transfer, as in
decisions and loops.
- Tools based construction.

Control Flow Analysis /2

- Result

- Easy understandable overview of
program code
- Acontrol flow graphisjusta
simplified version of flow chart
- Anomalies® can easily be detected,
defects stick out
- loops exited by jumps
- dead branches
- multiple returns

* Anomalies: an irregularity of inconsistency

Data Flow Analysis /1

Aim:

- To discover data flow anomalies with help of control flow graph and sensible
assumption of data flow sequences.

Benefits:

- Reliable detection of data flow anomalies.
- Exact location of errors can be determined easily.
- A good supplement for other testing methods.

Drawbacks:

- Limited to a narrow range of error types.

Data Flow Analysis /2 - Method

A variable x may have the following different stages during program execution:

- xisundefined (u): no value is assigned to x
- xisdefined (d): a value is assigned to x (e.g. x =1)
- xisreferenced (r): a reference is taken, the value of x does not change (e.g. if (x>0 or a=b+x)

The data flow of a variable can be expressed as a sequence of the states: d, u,and r,
eg.x->udrdrru

If one of these sequence contain a sub sequence which does not make sense, a data flow
anomaly is identified:

ur-anomaly: undefined value gets referenced
du-anomaly: defined value gets undefined before reading

dd-anomaly: defined value gets defined again before reading

Data Flow Analysis /3

For this example the values of

The data flow analysis shows: This example can be

two variables are exchanged
via an auxiliary variable, if

they are not stored by value.

void MinMax (int Min, int

Variable Help is still
undefined when it gets
referenced: ur-anomaly

corrected easily:

void MinMax(intMin, intMax){

i) IntHelp:
ax .
{ - Variable Max gets defined d (MmM> M?XI-)I{ lo:
Int Help: twice without any ax: ? ?’
If (Min > Max) reference in between: Max = Min;
dd-anomaly Help = Min;
- Defined value for Help gets }
undefined (program ends) End MinMax
without reference: du-
End MinMax anomaly }

}

Metrics and Their Computation

Using Metrics, certain aspect of program quality can be measured
- The metric has only relevance for the measured aspect
The static complexity of the program can be measured
- Currently, there are about 100 different metrics available
Different metrics address different aspects of program complexity

- program size (e.g. Lines of Code -LOC)
- program control structure (e.g. cyclomatic number)
- data control structures (e.g. Halstead-Metric)

It is difficult to compare different metrics, even if they address the same attribute of the
program !

Metrics and Their Implementation /1

Cyclomatic Number v(G)

- Metric to measure the static complexity of a program
based on its control flow graph
- Measure linear independent program paths, as an
indication for testability and maintainability
- The cyclomatic number is made up of
- Number of edges e
- Number of nodesn
- Number of inspected independent
program parts p (mostly 1)

Values up to 10 are acceptable. Beyond this, code should
be reworked/improved (best practice, McCabe)

v(G)=e-n+2p

Metrics and Their Implementation /2

Example 111/03-2 (Cyclomatic Number)

- the number to the right has
- lprogrampart: p=1
- 15 nodes: n=15
- 20 edges: e=20

The number to a cyclomatic number of
v (G) =e-n+2p
v(G)=7

v(G)=e-n+2p

Metrics and Their Implementation /3

Cyclomatic Number (by McCabe) - Implication

- The cyclomatic number can be used as a target value for code reviews.

- The cyclomatic number can also be calculated as the number of
independent decisions plus one. If both ways of calculation give different
results, it may be due to

- Asuperfluous branch
- A missing branch

The cyclomatic number also gives as indication for the number of necessary
test cases (to achieve decision coverage)

