Equivalence partitioning
Boundary value analysis
State transition testing
Decision tables

Use case based testing

Black box

Experience-based techniques

Dynamic

Statement Coverage
Branch Coverage
Condition Coverage
Path Coverage

White box

Reviews/ walkthroughs
ontrol flow analysis

ta flow analysis

mpiler metrics/ analysis

Structure-based or while-box techniques
- The following technigues will be explained in detail:
- Statement testing and coverage
- Branch testing and coverage
- Decision testing and coverage
- Path testing coverage

- Remark:

These techniques represent the most important and most widely used
dynamic testing techniques. They relate to the static analysis techniques
which were described earlier.

The main types of coverage

Statement coverage
- the percentage of executable statements that have been exercised by the test cases
- can also be applied to modules, classes, menu points, etc.
Decision coverage (=branch coverage)
- the percentage of decision outcomes, that have been exercised by in the test case
Path coverage
- the percentage of execution paths, that have been exercised by the test cases
Condition coverage
- the percentage off all single condition outcomes independently affecting a decision
outcome, that have been exercised by the test cases

- Condition coverage comes in various degrees, e.g. single, multiple and minimal multiple
condition coverage

Statement Coverage:

If (i>0)

{
If(j>10)
{

While (k>10)

{
Do 15t task...

}

}
Do 2 task...

}
Do End task

For this Statement 1 test case is needed

Statement coverage
- Example:
-We are assessing the following segments of
program code, which is represented by
the control flow graph (see right side):

if(i >0)
{
=1 (1);
if(j>10)
{
while(k>10)
{
}
}

Statement Coverage- Example 1/2
- Consider the program represented by the control flow
graph on the right

- Contains two if statements and a loop (do while)
inside the second if-statement

- There are three different “routes”

through the program statement
- The first if- statement allows two
directions
- The right hand direction on the first
statement is divided again using the
second if- statement

- All statements of this program can be reached
using the rout to the right

- Asingle test case will be enough to reach
100% statement coverage

Statement coverage- Example 2
- Example 1V/02-2
- In this example the graph is slightly more compl O
- The program contains the if statements
and loop (inside one if statement) O O
- Four different “routes” lead trough this

program segment 3 0 O 0

- The first if statements allows two

directions O
- In both branches of the if statements O
another if-statement allows the again O

two different directions
- For a 100% statement coverage, four test
cases are needed ' O

Statement coverage

Benefits/drawbacks of this method
- Dead code, that is, code made up of statements that are never
executed, will be discovered

- If there is dead code within the program, a 100% coverage cannot be
achieved

- Missing instructions, that is, code which is necessary in order to
fulfill the specification, cannot be detected
- Testing is only done with respect to the executed statements: can all code
be reached/executed?
- Missing code cannot be detected using white box test techniques

Number of executed Statement
Statement coverage(CO0)= ----------mmmmmmmmmm oo *100%
Total number of all Statement

Decision coverage

- Instead of statements, decision coverage focuses on the control flow with a
program segment (not the needs, but the edges of a control flow graph)

- All edges of control flow graph have to be coverage at least once
- Which test cases are necessary to cover each edge of the control flow
graph at least once?

- Aim of this test (test exit criteria) is to achieve the coverage of a selected
percentage of all decisions, called the decision coverage

Number of executed decisions
Decision coverage(Cl)= -----=-m=mm=mmmmmmmmmm oo *100%
Total number of all decisions

Branch Coverage:

If (i>0)
{
If(j>10)
{
While (k>10)
{
Do 15t task...
}
}
Do 2 task...
}
Do End task

Considering BC there are 3 test case is needed

Decision coverage- Example 1

- The control flow graph on the right represents the program
segment to be inspected

- Three different “routes” lead through the

graph of this program segment
- The first if statements leads onto
two different directions

- One path of the first if-statement is
divided again in two different paths
, one of which holds a loop

- All edges can only be reached via
combination of the three possible
paths

- Three test cases are needed to achieve
a decision coverage of 100%

Decision coverage- Example 2

- In this example the graph is slightly more comple:

- Four different “routes” lead through this program
- The first if-statement allows two
directions
- In both branches of the if- statement
allows again for two different directions
- In this example, the loop is not counted
as on additional decision
- For a 100% decision coverage four test
cases are needed
- In this example, the same set of test cases
IS also required for 100% statement coverage!

Decision coverage

- Achieving 100% decision coverage requires at least as many test cases as
100% statement coverage — In most cases more

- a 100% decision coverage always includes a 100% statement coverage!

- In most cases edges are covered multiple times

- Drawbacks
- Missing statement cannot be detected
- Not sufficient to test complex conditions
- Not sufficient to test loops extensively
- No consideration of dependencies between loops

Condition Coverage

The complexity of a condition that is made up of several atomic conditions
IS taken into account

- An atomic condition can not be divided further into smaller condition
statements

This method aims at finding defects resulting from the implementation of
multiple conditions (combined conditions)

- Multiple conditions are made up of atomic conditions, which are
combined using logical operators like OR, AND, XOR, etc.

- Atomic conditions do not contain logical operators but only relational
operators and the NOT operator (=, >, <etc.)

There are three types of condition coverage
- simple condition coverage
- multiple condition coverage
- minimal multiple condition coverage

Simple condition coverage

- Every atomic sub-condition of combined condition statement has to take at least once the
logical values true as well as false

Example 1V/02-6

Consider the following condition

a>2 OR b<6
Test cases for simple condition

Coverage could be for example

a=3 (true)

b=7 (false)

a>2 OR b<6 (true)

a=1 (false)

b=5 (true)

a>2 OR b<6 (true)

This example is used to explain
condition coverage, using
multiple condition expression

With only two test cases, a simple
condition coverage can be
achieved
Each sub condition has
taken on the value true
and the value false
However, the combined result is
true in both cases
- true OR false= true
- false OR true=true

Multiple condition coverage
- All combinations that can be created Using permutation of the

atomic sub conditions be part of the test

Example 1V/02-6
Consider the following condition

a>2 OR b<6
Test cases for simple condition
Coverage could be for example

a=3 (true) b=7 (false) a>2 OR b<6 (true)
a=3 (true) b=5 (true) a>2 OR b<6 (true)
a=1 (false) b=5 (true) a>2 OR b<6 (true)
a=1 (false) b=7 (false) a>2 OR b<6 (false)

- This example is used to
explain condition coverage
using a multiple condition
expression

- With four test cases, the
multiple condition coverage
can be achieved

- All possible combinations
of true and false were
created

- All possible results of the
multiple conditions were
achieved

- The number of test cases
increase exponentially

- n= number of atomic conditions
- 2 "n=number of test cases

Minimal multiple condition coverage

- All combinations that can be created using the logical results of the sub conditions
must be part of the test, only if the change of the outcome of one sub-condition
changes the result of the combined condition

- This example is used to
explain condition coverage
using a multiple condition

Example 1V/02-6
Consider the following condition

a>2 OR b<6 .
Test cases for simple condition expression
Coverage could be for example - For three out of four test cases
the changes of a sub-condition
a=3 (true) b=7 (false) | a>2 OR b<6 (true) changes the overall result
- Only for case no.2 (true OR
a=3 (true) | b=5 (true) | a>2 OR b<6 (true) true=true) the change of a
sub condition will not result
a=1 (false) b=5 (true) a>2 OR b<6 (true) in a Change of the overall
condition. This test case can
a=1 (false) | b=7 (false) | a>2 OR b<6 (false) be omitted!

Condition coverage- general conclusion

- The simple condition coverage is a week instrument for testing multiple
conditions

- The multiple condition coverage is a much better method
- It ensures statement and decision coverage
- However, it results in a high number of test cases: 2*n
- Some combination may not be possible execute
~ -e.g. for x>5 AND x<10 both sub conditions cannot be false at the same
time
- The minimal multiple condition coverage is even better, because
- It reduces the number of test cases
- Statement and decision coverage are covered as well
- Takes into account the complexity of decision statements
All complex decisions must be tested- the minimal multiple condition
coverage is a suitable method to achieve this goal

Path coverage

- Path coverage focuses on the execution of all possible paths through a
program
- A path is a combination of program segments (in a control flow graph: an
alternating sequence of nodes and edges)
- For decision coverage, a single path through a loop is sufficient. For path

through a loop is sufficient. For path coverage , there are additional test cases:
- One test case not entering the loop
- One additional test case for every number of loop executions

- This may easily lead to a very high number to test cases

Path coverage
- Focus of the coverage analysis is the control flow graph:

- Statements are nodes

- Control flow is represented by the edges

- Every path is a unique way from the beginning to the end of the control

flow graph
- The aim of this test (test exit criteria) is to reach a defined path
coverage percentage

Number of executed Path
Path coverage= -----------mmmm oo *100%
Total number of all Path

Path coverage- Example 1

- Example 1V/02-5:

- The control flow graph on the right
represents the program segment to be
inspected Il contains three statements

- Three different paths leading through
the graph of this program segment achieve

full decision coverage
- However, five different possible paths may

be executed
- Five test cases are required to achieve

100% path coverage
- Only two are needed for 100% CO-,

three are needed for 100% C1-coverag

Path coverage- Example 2

Example 1VV/02-6:
- The control flow graph on the right represents
the program segment to be inspected. It
contains two if-statements and a loop inside :
the second if-statement
- Three different paths leading through the

graph of this program segment achieve
full decision coverage
- Four different paths are possible, if the "
loop is executed twice %
- Every increment of the loop counter
adds a new test case

Path coverage- general conclusions

100% path coverage can be achieved for very simple programs possible
number of loop executions constitutions a new test case

- A single loop can be load to test case explosion because every possible
number of loop executions constitutions a new test case
- Theoretically an identifinite number of paths is possible

Path coverage is much more comprehensive than statement or decision
coverage

- Every possible path through the program is executed

100% path coverage includes 100% decision coverage, which again
contains 100% statement coverage

Experienced-based techniques

Definition of experience- based technigues

Practice of creating test cases without a clear Methodical approach, based on
the intuition ¢ea s, se:7s @) and experience of the tester

- Test cases are based on intuition and and experience
- Where have errors accumulated in the past?
- Where does software often fail

Fundamentals
- Experience based testing is also called intuitive testing and includes: error

guessing (weak point oriented testing) and exploratory testing (iterative
testing based on gained knowledge about the system)

- Mostly applied in order to complement other, more formally created test
cases

- Does not meet the criteria for systematical testing
- Often produce additional test cases that might not be created
with other practices, for example
- Testing a leap year after 2060
(known problems of the past)
- Empty sets within input values
(a similar application has had errors on this)

Test case design
The tester must dispose of applicable experience or knowledge
- Intuition- Where can errors be hiding?
- Intuition characterizes a good tester
- Experience- What error were encountered where in the past?
- Knowledge based on experience
- An alternative is to set up a list of recurring errors
- knowledge/Awareness- Where are specific errors expected?
- Specific details of the project are incorporated
- Where will errors be made due to time pressure and complexity?
- Are inexperienced programmers involved?

Summary

Experience based techniques complement systematical techniques to
determine test cases

They depend strongly on the individual ability of the tester

Error guessing and Explorative testing are two of the more widely used
techniques of experience based testing

