
St
at

ic
D

yn
am

ic

W
h

it
e

 b
o

x
B

la
ck

 b
o

x

Reviews/ walkthroughs
Control flow analysis
Data flow analysis
Compiler metrics/ analysis

Statement Coverage
Branch Coverage
Condition Coverage
Path Coverage

Experience-based techniques

Equivalence partitioning
Boundary value analysis
State transition testing
Decision tables
Use case based testing

Structure-based or while-box techniques

- The following techniques will be explained in detail:

- Statement testing and coverage

- Branch testing and coverage

- Decision testing and coverage

- Path testing coverage

- Remark:

These techniques represent the most important and most widely used

dynamic testing techniques. They relate to the static analysis techniques

which were described earlier.

The main types of coverage

- Statement coverage

- the percentage of executable statements that have been exercised by the test cases

- can also be applied to modules, classes, menu points, etc.

- Decision coverage (=branch coverage)

- the percentage of decision outcomes, that have been exercised by in the test case

- Path coverage

- the percentage of execution paths, that have been exercised by the test cases

- Condition coverage

- the percentage off all single condition outcomes independently affecting a decision

outcome, that have been exercised by the test cases

- Condition coverage comes in various degrees, e.g. single, multiple and minimal multiple

condition coverage

Statement Coverage:

1

2

E

If (i>0)
{

If(j>10)
{

While (k>10)
{
Do 1st task…
}

}
Do 2nd task…

}
Do End task

For this Statement 1 test case is needed

Statement coverage

- Example:

-We are assessing the following segments of

program code, which is represented by

the control flow graph (see right side):

if(i > 0)

{

j=f (i);

if(j>10)

{

while(k>10)

{

}

}

}

1

2

E

Statement Coverage- Example 1/2

- Consider the program represented by the control flow

graph on the right

- Contains two if statements and a loop (do while)

inside the second if-statement

- There are three different “routes”

through the program statement

- The first if- statement allows two

directions

- The right hand direction on the first

statement is divided again using the

second if- statement

- All statements of this program can be reached

using the rout to the right

- A single test case will be enough to reach

100% statement coverage

1

2

E

Statement coverage- Example 2

- Example IV/02-2

- In this example the graph is slightly more complex

- The program contains the if statements

and loop (inside one if statement)

- Four different “routes” lead trough this

program segment

- The first if statements allows two

directions

- In both branches of the if statements

another if-statement allows the again

two different directions

- For a 100% statement coverage, four test

cases are needed

Statement coverage

Benefits/drawbacks of this method

- Dead code, that is, code made up of statements that are never

executed, will be discovered
- If there is dead code within the program, a 100% coverage cannot be

achieved

- Missing instructions, that is, code which is necessary in order to

fulfill the specification, cannot be detected
- Testing is only done with respect to the executed statements: can all code

be reached/executed?

- Missing code cannot be detected using white box test techniques

Number of executed Statement
Statement coverage(C0)= ---* 100%

Total number of all Statement

Decision coverage

- Instead of statements, decision coverage focuses on the control flow with a

program segment (not the needs, but the edges of a control flow graph)

- All edges of control flow graph have to be coverage at least once

- Which test cases are necessary to cover each edge of the control flow

graph at least once?

- Aim of this test (test exit criteria) is to achieve the coverage of a selected

percentage of all decisions, called the decision coverage

Number of executed decisions

Decision coverage(C1)= ---* 100%

Total number of all decisions

Branch Coverage:

1

2

E

If (i>0)
{

If(j>10)
{

While (k>10)
{
Do 1st task…
}

}
Do 2nd task…

}
Do End task

Considering BC there are 3 test case is needed

Decision coverage- Example 1

- The control flow graph on the right represents the program
segment to be inspected

- Three different “routes” lead through the

graph of this program segment
- The first if statements leads onto

two different directions

- One path of the first if-statement is

divided again in two different paths

, one of which holds a loop

- All edges can only be reached via

combination of the three possible

paths

- Three test cases are needed to achieve

a decision coverage of 100%

1

2

E

Decision coverage- Example 2

- In this example the graph is slightly more complex

- Four different “routes” lead through this program segment

- The first if-statement allows two

directions

- In both branches of the if- statement

allows again for two different directions

- in this example, the loop is not counted

as on additional decision

- For a 100% decision coverage four test

cases are needed

- In this example, the same set of test cases

is also required for 100% statement coverage!

Decision coverage

- Achieving 100% decision coverage requires at least as many test cases as

100% statement coverage – In most cases more

- a 100% decision coverage always includes a 100% statement coverage!

- In most cases edges are covered multiple times

- Drawbacks

- Missing statement cannot be detected

- Not sufficient to test complex conditions

- Not sufficient to test loops extensively

- No consideration of dependencies between loops

Condition Coverage

- The complexity of a condition that is made up of several atomic conditions
is taken into account

- An atomic condition can not be divided further into smaller condition

statements

- This method aims at finding defects resulting from the implementation of
multiple conditions (combined conditions)

- Multiple conditions are made up of atomic conditions, which are

combined using logical operators like OR, AND, XOR, etc.

- Atomic conditions do not contain logical operators but only relational

operators and the NOT operator (=, >, < etc.)

- There are three types of condition coverage

- simple condition coverage

- multiple condition coverage

- minimal multiple condition coverage

Simple condition coverage
- Every atomic sub-condition of combined condition statement has to take at least once the

logical values true as well as false

- This example is used to explain

condition coverage, using

multiple condition expression

- With only two test cases, a simple

condition coverage can be

achieved

- Each sub condition has

taken on the value true

and the value false

- However, the combined result is

true in both cases

- true OR false= true

- false OR true= true

Example IV/02-6
Consider the following condition

a>2 OR b<6
Test cases for simple condition
Coverage could be for example

a=3 (true) b=7 (false) a>2 OR b<6 (true)

a=1 (false) b=5 (true) a>2 OR b<6 (true)

Multiple condition coverage

- All combinations that can be created Using permutation of the
atomic sub conditions be part of the test

- This example is used to

explain condition coverage

using a multiple condition

expression

- With four test cases, the

multiple condition coverage

can be achieved

- All possible combinations

of true and false were

created

- All possible results of the

multiple conditions were

achieved

- The number of test cases

increase exponentially

- n= number of atomic conditions

- 2^n=number of test cases

Example IV/02-6
Consider the following condition

a>2 OR b<6
Test cases for simple condition
Coverage could be for example

a=3 (true) b=7 (false) a>2 OR b<6 (true)

a=3 (true) b=5 (true) a>2 OR b<6 (true)

a=1 (false) b=5 (true) a>2 OR b<6 (true)

a=1 (false) b=7 (false) a>2 OR b<6 (false)

Minimal multiple condition coverage
- All combinations that can be created using the logical results of the sub conditions

must be part of the test, only if the change of the outcome of one sub-condition
changes the result of the combined condition

- This example is used to

explain condition coverage

using a multiple condition

expression

- For three out of four test cases

the changes of a sub-condition

changes the overall result

- Only for case no.2 (true OR

true=true) the change of a

sub condition will not result

in a change of the overall

condition. This test case can

be omitted!

Example IV/02-6
Consider the following condition

a>2 OR b<6
Test cases for simple condition
Coverage could be for example

a=3 (true) b=7 (false) a>2 OR b<6 (true)

a=3 (true) b=5 (true) a>2 OR b<6 (true)

a=1 (false) b=5 (true) a>2 OR b<6 (true)

a=1 (false) b=7 (false) a>2 OR b<6 (false)

Condition coverage- general conclusion

- The simple condition coverage is a week instrument for testing multiple
conditions

- The multiple condition coverage is a much better method

- It ensures statement and decision coverage

- However, it results in a high number of test cases: 2^n

- Some combination may not be possible execute

- e.g. for x>5 AND x<10 both sub conditions cannot be false at the same
time

- The minimal multiple condition coverage is even better, because

- It reduces the number of test cases

- Statement and decision coverage are covered as well

- Takes into account the complexity of decision statements

All complex decisions must be tested- the minimal multiple condition

coverage is a suitable method to achieve this goal

Path coverage

- Path coverage focuses on the execution of all possible paths through a

program

- A path is a combination of program segments (in a control flow graph: an

alternating sequence of nodes and edges)

- For decision coverage, a single path through a loop is sufficient. For path

through a loop is sufficient. For path coverage , there are additional test cases:

- One test case not entering the loop

- One additional test case for every number of loop executions

- This may easily lead to a very high number to test cases

Path coverage

- Focus of the coverage analysis is the control flow graph:

- Statements are nodes

- Control flow is represented by the edges

- Every path is a unique way from the beginning to the end of the control

flow graph

- The aim of this test (test exit criteria) is to reach a defined path

coverage percentage

Number of executed Path
Path coverage= ---* 100%

Total number of all Path

Path coverage- Example 1

- Example IV/02-5:

- The control flow graph on the right

represents the program segment to be

inspected II contains three statements

- Three different paths leading through

the graph of this program segment achieve

full decision coverage

- However, five different possible paths may

be executed

- Five test cases are required to achieve

100% path coverage

- Only two are needed for 100% C0-,

three are needed for 100% C1-coverage

Path coverage- Example 2

Example IV/02-6:

- The control flow graph on the right represents

the program segment to be inspected. It

contains two if-statements and a loop inside

the second if-statement

- Three different paths leading through the

graph of this program segment achieve

full decision coverage

- Four different paths are possible, if the

loop is executed twice

- Every increment of the loop counter

adds a new test case

Path coverage- general conclusions

- 100% path coverage can be achieved for very simple programs possible

number of loop executions constitutions a new test case

- A single loop can be load to test case explosion because every possible

number of loop executions constitutions a new test case

- Theoretically an identifinite number of paths is possible

- Path coverage is much more comprehensive than statement or decision

coverage

- Every possible path through the program is executed

- 100% path coverage includes 100% decision coverage, which again

contains 100% statement coverage

Experienced-based techniques

Definition of experience- based techniques

Practice of creating test cases without a clear Methodical approach, based on

the intuition (সুচতুর অনুমান, স্বত:লব্ধ জ্ঞান) and experience of the tester

- Test cases are based on intuition and and experience

- Where have errors accumulated in the past?

- Where does software often fail

Fundamentals

- Experience based testing is also called intuitive testing and includes: error

guessing (weak point oriented testing) and exploratory testing (iterative

testing based on gained knowledge about the system)

- Mostly applied in order to complement other, more formally created test

cases

- Does not meet the criteria for systematical testing

- Often produce additional test cases that might not be created

with other practices, for example

- Testing a leap year after 2060

(known problems of the past)

- Empty sets within input values

(a similar application has had errors on this)

Test case design

The tester must dispose of applicable experience or knowledge

- Intuition- Where can errors be hiding?

- Intuition characterizes a good tester

- Experience- What error were encountered where in the past?

- Knowledge based on experience

- An alternative is to set up a list of recurring errors

- knowledge/Awareness- Where are specific errors expected?

- Specific details of the project are incorporated

- Where will errors be made due to time pressure and complexity?

- Are inexperienced programmers involved?

Summary

- Experience based techniques complement systematical techniques to

determine test cases

- They depend strongly on the individual ability of the tester

- Error guessing and Explorative testing are two of the more widely used

techniques of experience based testing

