
Pipelining

Pipelining

Pipelining is an implementation technique in which multiple
instructions are overlapped in execution.
Anyone who has done a lot of laundry has intuitively used pipelining.
The non-pipelined approach to laundry would be as follows:
1. Place one dirty load of clothes in the washer.
2. When the washer is finished, place the wet load in the dryer.
3. When the dryer is finished, place the dry load on a table and fold.
4. When folding is finished, ask your roommate to put the clothes
away.
When your roommate is done, start over with the next dirty load

Pipelining
• Start work ASAP!! Do not waste time!

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

Assume 30 min. each task – wash, dry, fold, store – and that
separate tasks use separate hardware and so can be overlapped

Pipelined

Not pipelined

• The same principles apply to processors where we pipeline
instruction-execution. MIPS instructions classically take five steps:
1. Fetch instruction from memory.
2. Read registers while decoding the instruction. The regular format of
MIPS instructions allows reading and decoding to occur
simultaneously.
3. Execute the operation or calculate an address.
4. Access an operand in data memory.
5. Write the result into a register

Pipelined vs. Single-Cycle Instruction
Execution: the Plan

Instruction
fetch

Reg ALU
Data

access
Reg

800
Instruction

fetch
Reg ALU

Data
access

Reg

800
Instruction

fetch

800

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

200 400 600 800 1000 1200 1400 1600 1800

200 400 600 800 1000 1200 1400

...

Program
execution
order
(in instructions)

Instruction
fetch

Reg ALU
Data

access
Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

200
Instruction

fetch
Reg ALU

Data
access

Reg

200
Instruction

fetch
Reg ALU

Data
access

Reg

200 200 200 2 00 200

Program
execution
order
(in instructions)

Single-cycle

Pipelined

Assume 200 ps for memory access, ALU operation; 100 ps for register access:
therefore, single cycle clock 800 ps; pipelined clock cycle 200 ps.

Any condition that causes a stall in the pipeline operations can be called a hazard. There are
primarily three types of hazards:

i. Data Hazards

ii. Control Hazards or instruction Hazards

iii. Structural Hazards.

i. Data Hazards: Data hazards arise because of the unavailability of an operand

A data hazard is any condition in which either the source or the destination operands of an
instruction are not available at the time expected in the pipeline. As a result of which some
operation has to be delayed and the pipeline stalls. Whenever there are two instructions one of
which depends on the data obtained from the other.

• A=3+A

• B=A*4

For the above sequence, the second instruction needs the value of ‘A’ computed in the first
instruction.

Thus the second instruction is said to depend on the first.

If the execution is done in a pipelined processor, it is highly likely that the interleaving of these two
instructions can lead to incorrect results due to data dependency between the instructions. Thus
the pipeline needs to be stalled as and when necessary to avoid errors.

ii. Control Hazards:

Instructions that disrupt the sequential flow of control present problems for pipelines. The effects
of these instructions can't be exactly determined until late in the pipeline, so instruction fetch can't
continue unless we do something special. The following types of instructions can introduce control
hazards: Unconditional branches, Conditional branches, Indirect branches, Procedure calls etc.

iii. Structural Hazards:

This situation arises mainly when two instructions require a given hardware resource at the same
time and hence for one of the instructions the pipeline needs to be stalled.

The most common case is when memory is accessed at the same time by two instructions. One
instruction may need to access the memory as part of the Execute or Write back phase while other
instruction is being fetched. In this case if both the instructions and data reside in the same
memory. Both the instructions can’t proceed together and one of them needs to be stalled till the
other is done with the memory access part. Thus in general sufficient hardware resources are
needed for avoiding structural hazards.

Data Hazards and solutions

• Example: Let there be two instructions I1 and I2 such that:
I1 : ADD R1, R2, R3
I2 : SUB R4, R1, R2

When the above instructions are executed in a pipelined processor, then data dependency
condition will occur, which means that I2 tries to read the data before I1 writes it, therefore,
I2 incorrectly gets the old value from I1.

INSTRUCTI
ON / CYCLE

1 2 3 4

I1 IF ID EX DM

I2 IF
ID(Old
value)

EX

• To minimize data dependency stalls in the pipeline, operand forwarding is used.

Considering the same example:
I1 : ADD R1, R2, R3
I2 : SUB R4, R1, R2

Interlocking: stall pipeline for one or more cycles

INSTRUCTI
ON / CYCLE

1 2 3 4

I1 IF ID EX DM

I2 bubble bubble IF ID

Operand Forwarding : In operand forwarding, we use the interface registers present between the
stages to hold intermediate output so that dependent instruction can access new value from the
interface register directly.

Control Hazards and solution

• This type of dependency occurs during the transfer of control instructions such as BRANCH, CALL,
JMP, etc. On many instruction architectures, the processor will not know the target address of
these instructions when it needs to insert the new instruction into the pipeline. Due to this,
unwanted instructions are fed to the pipeline.

• Consider the following sequence of instructions in the program:
100: I1

101: I2 (JMP 250)
102: I3

.

.
250: BI1

• Expected output: I1 -> I2 -> BI1

NOTE: Generally, the target address of the JMP instruction is known after ID stage only.

Output Sequence: I1 -> I2 -> I3 -> BI1

So, the output sequence is not equal to the expected output, that means the pipeline is not
implemented correctly.

To correct the above problem we need to stop the Instruction fetch until we get target address of
branch instruction. This can be implemented by introducing delay slot until we get the target
address.

• Output Sequence: I1 -> I2 -> Delay (Stall) -> BI1

As the delay slot performs no operation, this output sequence is equal to the expected output
sequence. But this slot introduces stall in the pipeline.

• Solution for Control dependency Branch Prediction is the method through which stalls due to
control dependency can be eliminated. In this, at 1st stage, prediction is done about which branch
will be taken. For branch prediction Branch penalty is zero.

Structural Hazards and solutions

This dependency arises due to the resource conflict in the pipeline. A resource conflict is a situation
when more than one instruction tries to access the same resource in the same cycle. A resource can
be a register, memory, or ALU.

Example:

In the above scenario, in cycle 4, instructions I1 and I4 are trying to access same resource (Memory)
which introduces a resource conflict.
To avoid this problem, we have to keep the instruction on wait until the required resource (memory
in our case) becomes available. This wait will introduce stalls in the pipeline as shown below:

Solution for Structural Hazards

To minimize structural dependency stalls in the pipeline, we use a hardware mechanism called
Renaming.
Renaming : According to renaming, we divide the memory into two independent modules used to
store the instruction and data separately called Code memory(CM) and Data memory(DM)
respectively. CM will contain all the instructions and DM will contain all the operands that are
required for the instructions.

