
Topics: Software quality assurance, CMM, UML diagram, Use Case diagram 

Software Quality Assurance 

What is Quality? 

Quality defines to any measurable characteristics such as correctness, maintainability, portability, 

testability, usability, reliability, efficiency, integrity, reusability, and interoperability. 

There are two kinds of Quality: 

 

Quality of Design: Quality of Design refers to the characteristics that designers specify for an 

item. The grade of materials, tolerances, and performance specifications that all contribute to the 

quality of design. 

Quality of conformance: Quality of conformance is the degree to which the design specifications 

are followed during manufacturing. Greater the degree of conformance, the higher is the level of 

quality of conformance. 

Software Quality: Software Quality is defined as the conformance to explicitly state functional 

and performance requirements, explicitly documented development standards, and inherent 

characteristics that are expected of all professionally developed software. 

Quality Control: Quality Control involves a series of inspections, reviews, and tests used 

throughout the software process to ensure each work product meets the requirements place upon 

it. Quality control includes a feedback loop to the process that created the work product. 

Quality Assurance: Quality Assurance is the preventive set of activities that provide greater 

confidence that the project will be completed successfully. 

 



Quality Assurance Quality Control 

Quality Assurance (QA) is the set of actions 

including facilitation, training, measurement, and 

analysis needed to provide adequate confidence that 

processes are established and continuously improved 

to produce products or services that conform to 

specifications and are fit for use. 

Quality Control (QC) is described as the 

processes and methods used to compare 

product quality to requirements and applicable 

standards, and the actions are taken when a 

nonconformance is detected. 

QA is an activity that establishes and calculates the 

processes that produce the product. If there is no 

process, there is no role for QA. 

QC is an activity that demonstrates whether or 

not the product produced met standards. 

QA helps establish process QC relates to a particular product or service 

QA sets up a measurement program to evaluate 

processes 

QC verified whether particular attributes 

exist, or do not exist, in a explicit product or 

service. 

QA identifies weakness in processes and improves 

them 

QC identifies defects for the primary goals of 

correcting errors. 

Quality Assurance is a managerial tool. Quality Control is a corrective tool. 

Verification is an example of QA. Validation is an example of QC. 

Capability Maturity Model (CMM) & it’s Levels: 
Capability Maturity Model is used as a benchmark to measure the maturity of an organization’s 

software process. 

The CMM was developed at the Software engineering institute in the late 80’s. It was developed 

as a result of a study financed by the U.S Air Force as a way to evaluate the work of subcontractors. 

 



The entire CMM level is divided into five levels: 

 Level 1 (Initial): Where requirements for the system are usually uncertain, misunderstood 

and uncontrolled. The process is usually chaotic and ad-hoc. 

 Level 2 (Managed): Estimate project cost, schedule, and functionality. Software 

standards are defined 

 Level 3 (Defined): Makes sure that product meets the requirements and intended use 

 Level 4 (Quantitatively Managed): Manages the project’s processes and sub-processes 

statistically 

 Level 5 (Optimizing): Identify and deploy new tools and process improvements to meet 

needs and business objectives 

How long does it take to Implement CMM? 

CMM is the most desirable process to maintain the quality of the product for any software 

development company, but its implementation takes little longer than what is expected. 

 CMM implementation does not occur overnight 

 It’s just not merely a “paperwork.” 

 Typical times for implementation is 

 3-6 months -> for preparation 

 6-12 months -> for implementation 

 3 months -> for assessment preparation 

 12 months ->for each new level 

Why Use CMM? 

Today CMM act as a “seal of approval” in the software industry. It helps in various ways to 

improve the software quality. 

 It guides towards repeatable standard process and hence reduce the learning time on how 

to get things done 

 Practicing CMM means practicing standard protocol for development, which means it not 

only helps the team to save time but also gives a clear view of what to do and what to 

expect 

 The quality activities gel well with the project rather than thought of as a separate event 

 It acts as a commuter between the project and the team 

 CMM efforts are always towards the improvement of the process 

 

 

 

 



UML diagram, Use Case diagram: 

 



 

 

 

 



Use Case Diagram Relationships Explained with Examples 

There are some relationship types in a use case diagram. 

 Association between actor and use case 

 Generalization of an actor 

 Extend between two use cases 

 Include between two use cases 

Let’s take a look at these relationships in detail. 

Association between Actor and Use Case 
This one is straightforward and present in every use case diagram. Few things to note. 

 An actor must be associated with at least one use case. 

 An actor can be associated with multiple use cases. 

 Multiple actors can be associated with a single use case. 

 
 

 

Generalization of an Actor 
Generalization of an actor means that one actor can inherit the role of the other actor. The 

descendant inherits all the use cases of the ancestor. The descendant has one or more use cases that 

are specific to that role. Let’s expand the previous use case diagram to show the generalization of 

an actor. 

 

https://d3n817fwly711g.cloudfront.net/blog/wp-content/uploads/2015/02/use-case-relationship-actor-use-case.png
https://d3n817fwly711g.cloudfront.net/blog/wp-content/uploads/2015/02/use-case-relationship-actor-generalization.png


Extend Relationship between Two Use Cases 

Many people confuse the extend relationship in use cases. As the name implies it extends the base 

use case and adds more functionality to the system. Here are a few things to consider when using 

the <<extend>> relationship. 

 The extending use case is dependent on the extended (base) use case. In the below 

diagram the “Calculate Bonus” use case doesn’t make much sense without the “Deposit 

Funds” use case. 

 The extending use case is usually optional and can be triggered conditionally. In the 

diagram, you can see that the extending use case is triggered only for deposits over 10,000 

or when the age is over 55. 

 The extended (base) use case must be meaningful on its own. This means it should be 

independent and must not rely on the behavior of the extending use case. 

Let’s expand our current example to show the <<extend>> relationship. 

 

Include Relationship between Two Use Cases 

Include relationship show that the behavior of the included use case is part of the including (base) 

use case. The main reason for this is to reuse common actions across multiple use cases. In some 

situations, this is done to simplify complex behaviors. Few things to consider when using the 

<<include>> relationship. 

 The base use case is incomplete without the included use case. 

 The included use case is mandatory and not optional. 

Lest expand our banking system use case diagram to show include relationships as well. 

https://d3n817fwly711g.cloudfront.net/blog/wp-content/uploads/2015/02/use-case-diagram-relationships-extend.png


 

 

 

 

 

 

 

 

https://d3n817fwly711g.cloudfront.net/blog/wp-content/uploads/2015/02/use-case-diagram-relationships-include.png


Example: Use Case 

 



 

 


