
Java – Exceptions Handling



Java – Exceptions Handling

• Exception is an abnormal condition.

• An exception (or exceptional event) is a problem that arises during
the execution of a program.

• In java, exception is an event that disrupts the normal flow of the
program.

• It is an object which is thrown at runtime.



What is exception handling

• Exception Handling is a mechanism to handle runtime errors such as
ClassNotFound, IO, SQL, Remote etc.



Java – Exceptions

An exception can occur for many different reasons, below given are
some scenarios where exception occurs.

• A user has entered invalid data.

• A file that needs to be opened cannot be found.

• A network connection has been lost in the middle of communications or the
JVM has run out of memory.

Some of these exceptions are caused by user error, others by programmer
error, and others by physical resources that have failed in some manner.



Types of Exception

There are mainly two types of exceptions: checked and unchecked
where error is considered as unchecked exception. The sun
microsystem says there are three types of exceptions:

• Checked Exception

• Unchecked Exception

• Error



Checked exceptions

• All exceptions other than Runtime Exceptions are known as Checked 
exceptions as the compiler checks them during compilation

• A checked exception is an exception that occurs at the compile time, 
these are also called as compile time exceptions.

• These exceptions cannot simply be ignored at the time of compilation



Examples of Checked Exceptions :

Some checked exceptions are as follows:
• ClassNotFoundException

• IllegalAccessException

• NotSuchFieldException

• EOFExceptionException



Unchecked Exceptions

• Runtime Exceptions are also known as Unchecked Exceptions as the
compiler do not check whether the programmer has handled them or
not

• These exceptions need not be included in any method’s throws list
because compiler does not check to see if a method handles or
throws these exceptions.



Examples of Unchecked Exceptions :

Some unchecked exceptions are as follows:

• ArithmaticException

• ArrayIndexOutOfBoundException

• NullPointerException

• NegativeArraySizeException



Hierarchy of Java Exception classes



Exception classes



Difference between checked and unchecked 
exceptions

• Checked Exception

The classes that extend Throwable class except RuntimeException and Error are
known as checked exceptions e.g.IOException, SQLException etc. Checked
exceptions are checked at compile-time.

• Unchecked Exception

The classes that extend RuntimeException are known as unchecked exceptions
e.g.ArithmeticException,NullPointerException, ArrayIndexOutOfBoundsException
etc. Unchecked exceptions are not checked at compile-time rather they are
checked at runtime.

• Error

Error is irrecoverable e.g. OutOfMemoryError, VirtualMachineError,
AssertionError etc.



Common scenarios where exceptions may occur

Scenario where ArithmeticException occurs

If we divide any number by zero, there occurs an ArithmeticException.

Scenario where NullPointerException occurs



NullPointerException



Common scenarios where exceptions may occur

Scenario where NumberFormatException occurs

Scenario where ArrayIndexOutOfBoundsException occurs



Java Exception Handling Keywords

There are 5 keywords used in java exception handling.

• try

• catch

• finally

• throw

• throws



Syntax for using try & catch

Example

Step 1) Copy the following code into an editor

1. class JavaException {

2. public static void main(String args[]){

3. int d = 0;

4. int n = 20;

5. int fraction = n/d;

6. System.out.println("End Of Main");

7. }

8. }



• Step 2) Save the file & compile the code. Run the program using command, java JavaException

• Step 3) An Arithmetic Exception - divide by zero is shown as below for line # 5 and line # 6 is never executed

• Step 4) Now let's see examine how try and catch will help us to handle this exception. We will put the exception 
causing the line of code into a try block, followed by a catch block. Copy the following code into the editor.

1. class JavaException {

2. public static void main(String args[]) {

3. int d = 0;

4. int n = 20;

5. try {

6. int fraction = n / d;

7. System.out.println("This line will not be Executed");

8. } catch (ArithmeticException e) {

9. System.out.println("In the catch Block due to Exception = " + e);

10. }

11. System.out.println("End Of Main");

12. }

13. }



Step 5) Save, Compile & Run the code.You will get the following output

• As you observe, the exception is handled, and the last line of code is also executed. Also, note 
that Line #7 will not be executed because as soon as an exception is raised the flow of control 
jumps to the catch block.

• Note: The AritmeticException Object "e" carries information about the exception that has 
occurred which can be useful in taking recovery actions.



Advantage of Exception Handling

The core advantage of exception handling
is to maintain the normal flow of the
application.

Let's take a scenario:

Suppose there is 10 statements in your
program and there occurs an exception at
statement 5, rest of the code will not be
executed i.e. statement 6 to 10 will not run.
If we perform exception handling, rest of the
statement will be executed. That is why we
use exception handling in java.


