
Introduction to Advanced Object Oriented
Programming

1

Why Object-Oriented?

“The "software crisis" came about when people realized the major problems in software development were
not algorithmic, but were caused by communication difficulties and the management of complexity”
[Budd]

The Whorfian Hypothesis:

The language in which an idea is thought or expressed colors or directs in a very emphatic manner the
nature of the thought

2

What kind of language can alleviate difficulties with

communication & complexity well?

♋♌🙰❖

⌘🙞🏵⮹

Why Object-Oriented?
– Consider Human Growth & Concept Formation

Communication & complexity about the problem and the solution, all expressed in terms of
concepts in a language!

But then, What is CONCEPT? [Martin & Odell]

Consider Human Growth & Concept Formation

3

stage concepts

infant the world is a buzzing confusion

very young age "blue" "sky“ (individual concepts)

"blue sky“ (more complex concept)

hypothesis: humans possess an innate

capacity for perception

getting older -> increased meaning, precision, subtlety,

...

the sky is blue only on cloudless days

the sky is not really blue

it only looks blue from our planet Earth

because of atmospheric effects

elaborate conceptual constructs

Concept formation: from chaos to order!

Why Object-Oriented?
- concepts and objects

So, concepts are needed to bring order into the problem and the solution

But, What is CONCEPT? [Martin & Odell] [Novak, 1984, Cambridge University Press]

Study of a first grade class

When given a list of concepts (water, salt water, Oceans, Penguins,...),

Harry constructed a concept diagram through which he understands his world and communicates
meaning

4

A "concept" is an idea or notion that we apply to the things, or objects, in our awareness

5

Object-Orientation (OO) = Being “conceptual”

OO analysis & design = “Conceptual” analysis & design

But for what?

for Modeling!

Analysis for Model of the problem

design for Model of the solution

“conceptual” analysis for “conceptual” model of the problem

“conceptual” design for “conceptual” model of the solution

Why Object-Oriented?
… for Conceptual Modeling Reasons

What kind of language is used to create this concept diagram, or Harry’s mental image?
What are the building blocks of Harry’s perception of this piece of reality,

represented in his mind/brain?

Why Object-Oriented ->
What is a model?

A model is a simplification of reality.

E.g., a miniature bridge for a real bridge to be built

Well...sort of….but not quite

A model is our simplification of our perception of reality (that is, if
it exists, otherwise it could be a mere illusion). Your perception, my
perception, his, hers, …, => communication is not
about reality but about your/my/his/her
perception of reality => validation and
verification hard but needed

A model is an abstraction (omitting tremendous amount of details) of
something for the purpose of understanding, be it the problem or
a solution.

A model (like Harry’s) is expressed in terms of concepts in a language!

6

7

Encapsulation

a.k.a. information hiding

Objects encapsulate:

state as a collection of instance variables

behavior as a collection of methods invoked by

messages

Abstraction

Focus on the essential

Focus on what an object “is and does”

Omits tremendous amount of details

What is Object-Orientation
- Abstraction and Encapsulation

8

Class Car

Attributes

❑Model

❑ Location

Operations

❑ Start

❑ Accelerate

What is Object-Orientation
- Example of Abstraction and Encapsulation

What is Object-Orientation?
- Object

What is OBJECT?

A "concept" is an idea or notion that we apply to the things, or objects, in our awareness

An "object" is anything to which a concept applies.

Thing drawn from the problem domain or solution space.
◦ E.g., a living person in the problem domain, a software component in the solution space.

A structure that

- has identity (i.e., discrete and distinguishable), and

- bundles together attributes (the data part, or state) and behavior (the function/code
part).

It is an instance of a collective concept, i.e., a class.

9

What is Object-Orientation?
- Class

What is CLASS?
◦ a collection of objects that share common properties, attributes, behavior and semantics, in general.

◦ A collection of objects with the same data structure (attributes, state variables) and behavior
(function/code/operations) in the solution space.

◦ A blueprint or definition of objects.

◦ A factory for instantiating objects.

◦ The description of a collection of related components.

Classification
◦ Grouping of common objects into a class

Instance.
◦ An object created by a class.

Instantiation.
◦ The act of creating an instance.

Cf. Containment.
◦ Objects that contain other objects as components.

10

11

What is Object-Orientation
- Subclass vs. Superclass

• Specialization
The act of defining one class as a refinement of another.

• Subclass
A class defined in terms of a specialization of a superclass

using inheritance.

• Superclass
A class serving as a base for inheritance in a class hierarchy

• Inheritance
Automatic duplication of superclass attribute and behavior
definitions in subclass.

12

What is Module?

A module is a software component or part of a program that contains one

or more routines. One or more independently developed modules make

up a program. An enterprise-level software application may contain

several different modules, and each module serves unique and separate

business operations.

Modules make a programmer's job easy by allowing the programmer to

focus on only one area of the functionality of the software application.

Software applications include many different tasks and processes that

cohesively serve all paradigms within a complete business solution. Early

software versions were gradually built from an original and basic level,

and development teams did not yet have the ability to use prewritten

code.

The introduction of modularity allowed programmers to reuse prewritten
code with new applications. Modules were created and bundled with
compilers, in which each module performed a business or routine
operation within the program.

For example, Systems, Applications and Products in Data Processing (SAP) -
an enterprise resource planning (ERP) software - is comprised of several
large modules (for example, finance, supply chain and payroll, etc.), which
may be implemented with little or no customization. A classic example of a
module-based application is Microsoft Word, which contains modules
incorporated from Microsoft Paint that help users create drawings or
figures.

What is OOAD?

Analysis — understanding, finding and describing concepts in the
problem domain.

Design — understanding and defining software solution/objects that
represent the analysis concepts and will eventually be implemented in
code.

OOAD — Analysis is object-oriented and design is object-oriented. A
software development approach that emphasizes a logical solution based
on objects.

14

15

What is Analysis

● Emphasis an investigation of the problem and requirements, rather

than a solution.

What is Design

● Emphasizes a conceptual solution that fulfills the requirements rather

its implementation

Do the right thing(analysis), and do the thing right(design). The purpose of

Analysis and Design:

Transform the requirements into a system design.

16

17

18

Systems Engineering

Requirements Analysis

Project Planning

Architectural Design

Detailed Design

Implementation

Release

Maintenance

Q
u

ality
 A

ssu
ran

ce

Software Lifecycle Review

How to Do OOAD
– Where to Use OO?

Where to use OO in software lifecycle? Where in this course?

How to Do OOAD
– OMT as Object-Oriented Methodology

OMT (Object Modeling Technique) by James Rumbaugh

19

Object Model: describes the static

structure of the objects in the system

and their relationships

-> Object Diagrams.

Dynamic Model: describes the

interactions among objects in the system

-> State Diagrams.

Functional Model: describes the data

transformation of the system

-> DataFlow Diagrams.

20

Analysis: Model the real world showing its

important properties; Concise model of

what the system will do

System Design: Organize into

subsystems based on analysis structure

and propose architecture

Object Design: Based on analysis model

but with implementation details; Focus on

data structures and algorithms to

implement each class; Computer and

domain objects

Implementation: Translate the object

classes and relationships into a

programming language

How to Do OOAD
– OMT as Object-Oriented Methodology

OMT (Object Modeling Technique) by James Rumbaugh

Why Object-Oriented
– Why Shift in Modeling Paradigm

From Functional
◦ Functions as building blocks (fn: Input -> Output)

◦ Algorithmic perspective

◦ E.g., Lisp

To Object-Oriented
◦ Objects as building blocks.

◦ Conceptual perspective

from the vocabulary of the problem space for analysis

from the vocabulary of the solution space for design

21

22

How to Do OOAD
- Historical Perspective

OO Prog. Languages

(Smalltalk, C++)
just program!

OO Design

(Booch) design then

program

OO Analysis

(Rumbaugh, Jacobson)

Process PerspectiveOO Technology

Analyze (use case) first,

then design,

T then program

Why Object-Oriented
- Programming Language Perspective

First Generation (1954-1958)
◦ Fortran I

Second Generation (1959-1961)
◦ Fortran II, Algol, Cobol

Third Generation (1962-1970)
◦ PL/I, Pascal

Object-Oriented Languages
◦ Smalltalk, C++, Java

23

1st Generation 2nd Gen

24

Fortran II, Algol, Cobol

3rd Generation Object Oriented

25

Fn

Data

Fn

Data

Fn

Data

Allocation of functionality to objects

Shift from monolithic to decentralized control
Object-Oriented Programming Languages (OOPL)PL/I, Pascal

What is Object-Orientation
- Abstract Class vs. Concrete Class

Abstract Class.
◦ An incomplete superclass that defines common parts.

◦ Not instantiated.

Concrete class.
◦ Is a complete class.

◦ Describes a concept completely.

◦ Is intended to be instantiated.

26

