
SW Architectural
Design

High Level Design

• Software Components (e.g. classes / packages
/ namespaces)

• Where to put each software component

• How they interact to solve the business
requirements

• Roles and Responsibilities of each software
component

Design Principles

Strong cohesion

Loose coupling

Design with OO principles

Inheritance

Polymorphism

Information hiding

…

What is Software Architecture?

High level description of the overall system:

The top-level structure of subsystems.

The role and interaction of these subsystems.

Grouping of classes to:

Improve Cohesion.

Reduce Coupling.

Cohesion:

Set of “things” that work well together.

Coupling:

Inter-Dependency between two entities.

Cohesion (= Intra-dependency)

Intra-dependencies of the components in a software unit (e.g.

class, method, module)

Want Strong cohesion

Meaning that “separating” these components apart to different units will

cause issues

Weak cohesion

Those components can be easily separated into different units without

causing problems

Refactoring (weak cohesion stronger cohesion)

Coupling (= Inter-dependency)

Inter-dependencies of different software units (e.g. class,

method, module)

Want Loose coupling

Meaning that the units do not depend on others very much

So replacing one unit with “a compatible one” will not cause issues

 Strong coupling

 Those units “depend” on each other so much that replacing one with “a compatible

one” will cause troubles due to some dependencies

 Refactoring (strong coupling loose coupling)

Software Architecture: Example

Take the minesweeper game as an example, and

identify the high level components:

Display:

Showing the game graphically.

Application Logic:

Determining the flags, numbers.

Checking whether there are more

mines, etc.

Record Storage:

Storing high scores, setting, etc.

Minesweeper: System One

Bad Cohesion:

Display functions all over

the place.

Application logic buried

under other operations.

Storage function not

clearly separated.

Low Coupling:

Since there is only one

class, there is no inter-

dependency!

public void ClickOnSquare(){

if (square == bomb) {

gameState = dead

show dead icon

write high score to file

}

else if (square == number){

open neighboring squares mark
squares as opened

display new board

}

}

………..// some other code

}

Minesweeper: System Two
class MSGUI { Minesweeper msApp;

MSStorage msStore;

public void mouseClickOnSquare(){

msApp.openSquare(..);

board = msApp.getCurrentBoard(..);

show(board);

}

public void menuExitClick() {

score = msApp.getHighScore();

msStore.writeHighScore(score);

}

}

class Minesweeper {

MSStorage msStore;

public void openSquare(position){

if (square == bomb)

gameState = dead;

else if (square == number){

open neighboring

squares mark squares as opened;

}

}

public Board getCurrentBoard() {
..

}

public void saveCurrentBoard() {

msStore.writeBoard(..);

}

}

class MSStorage {

public void writeHighScore(..){ }

public void writeBoard(..) { }

}

Minesweeper: System Two

Cohesion:

Each class groups logically similar functionality together:

Class MSGUI: user interface, input/output to screen;

Class Minesweeper: computation and logic;

Class MSStorage: file operations.

Coupling:

Some interdependencies. Can be improved.

Observe that MSGUI uses MSStorage directly.

Hence, if we substitute another user interface, the high

score saving functionality needs to be recorded.

Minesweeper: System Three
class MSGUI {

Minesweeper msApp;

// MSStorage msStore;

..

public void menuExitClick() {

msApp.closingDown();

}

}

class MSStorage {

public void writeHighScore(..){ }

public void writeBoard(..){ }

}

class Minesweeper {

MSStorage msStore;

..

public void closingDown() {

msStore.writehighScore(..)

}

public void saveCurrentBoard() {

}

}

Not needed

Minesweeper: System Three

Coupling:

Reduced. MSGUI depends on Minesweeper only.

Minesweeper depends on MSStorage only.

Low coupling enables easy maintenance, e.g.:

Changing MSGUI to MSTextUI would not affect the

main application at all.

Can swap in another storage class, e.g., database

storage, by providing the same methods.

Minesweeper: Systems Comparison

Minesweeper: Observations

Trade off between cohesion and coupling:

Improving cohesion usually implies worse (higher)

coupling and vice versa.

The three categories of functionality are quite

widely applicable:

User Interface.

Main Application Logic.

Storage (Persistency).

These observations help shaping Software

Architecture:

splitting a system into sub-systems.

The Layered Architecture

One of the oldest idea in Software Engineering.

Split into three separate layers:

Presentation Layer

User Interface.

Application Layer

The underlying logic.

Implements the functionality of system.

Storage Layer

Deals with data storage: files, database, etc.

The layers are higher level abstraction:

Each may contain several classes, or several packages (group of

classes).

UML Package Diagram

Minesweeper: Package Diagram

Design Pattern

• Well known patterns

–Model View Controller (MVC)

–Facade pattern

Model-View-Controller

• Model – data model

• View – presentation of the model

• Controller – controls the flow / interactions of
the view and model

Model-View-Controller

• The model-view-controller (MVC) design
pattern specifies that an application consist of
a data model, presentation information, and
control information.

• The pattern requires that each of these be
separated into different objects.

Model-View-Controller

• The model (for example, the data information) contains only
the pure application data; it contains no logic describing how
to present the data to a user.

• The view (for example, the presentation information)
presents the model's data to the user. The view knows how
to access the model's data, but it does not know what this
data means or what the user can do to manipulate it.

• Finally, the controller (for example, the control information)
exists between the view and the model. It listens to events
triggered by the view and executes the appropriate reaction
to these events. In most cases, the reaction is to call a
method on the model.

Model-View-Controller

Layered Architecture: Advantages

Layers aim to insulate a system from the effects

of change.

For example, user interfaces often change:

but the application layer does not use the presentation

layer.

so changes to system should be restricted to

presentation layer classes.

Similarly, details of persistent data storage are

separated from the application logic.

Software is interesting …..

Software is unique…

Two key themes

Interface design – Wireframing

Wireframing

Basic visual guide used in web design to suggest

the structure of a website and relationships

between its pages

A Wireframe is a illustration of the layout of

fundamental elements in an interface.

Because of this, wireframes are often completed

before any artwork is developed. When

completed correctly they will provide a visual

reference upon which to structure each page

Wire framing - Bare bones

Wire framing – Fleshing out items

