
Chapter 9: Virtual Memory

9.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Background

Virtual memory – separation of user logical memory from physical

memory.

Only part of the program needs to be in memory for execution.

Logical address space can therefore be much larger than

physical address space.

Allows address spaces to be shared by several processes.

Allows for more efficient process creation.

Virtual memory can be implemented via:

Demand paging

Demand segmentation

9.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Virtual Memory That is Larger Than Physical Memory



9.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Virtual-address Space

9.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Demand Paging

Bring a page into memory only when it is needed

Less I/O needed

Less memory needed

Faster response

More users

Page is needed  reference to it

invalid reference  abort

not-in-memory  bring to memory

9.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Valid-Invalid Bit

With each page table entry a valid–invalid bit is associated
(1  in-memory, 0  not-in-memory)

Initially valid–invalid but is set to 0 on all entries

Example of a page table snapshot:

1

1

1

1

0

0

0



Frame # valid-invalid bit

page table

9.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Page Table When Some Pages Are Not in Main Memory

9.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Page Fault

If there is ever a reference to a page, first reference will trap
to OS  page fault

OS looks at another table to decide:

Invalid reference  abort.

Just not in memory.

Find empty frame.

Load page from disk into frame.

Reset tables, validation bit = 1.

Restart instruction that caused page fault

9.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Steps in Handling a Page Fault

9.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

What happens if there is no free frame?

Page replacement – find some page in memory, but

not really in use, swap it out

algorithm

performance – want an algorithm which will result

in minimum number of page faults

Same page may be brought into memory several

times

9.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:

- If there is a free frame, use it

- If there is no free frame, use a page replacement

algorithm to select a victim frame

3. Read the desired page into the (newly) free frame. Update the

page and frame tables.

4. Restart the process

9.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Page Replacement

9.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Page Replacement

Use modify (dirty) bit to reduce overhead of page transfers – only

modified pages are written to disk

Page replacement completes separation between logical memory

and physical memory – large virtual memory can be provided on a

smaller physical memory

Solve two problems in demand paging implementation:

Frame-allocation algorithm – how many frames to allocate to each

process

Page-replacement algorithm – select frames to be replaced

9.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Graph of Page Faults Versus The Number of Frames

9.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Page Replacement Algorithms

Want lowest page-fault rate

Evaluate algorithm by running it on a particular string of

memory references (reference string) and computing the

number of page faults on that string

In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

9.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

First-In-First-Out (FIFO) Algorithm

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

3 frames (3 pages can be in memory at a time per process)

4 frames

FIFO Replacement – Belady’s Anomaly

more frames  more page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

9.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

FIFO Page Replacement

9.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

FIFO Illustrating Belady’s Anomaly

9.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Optimal Algorithm

Replace page that will not be used for longest period of time

4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

How do you know this?

Used for measuring how well your algorithm performs

1

2

3

4

6 page faults

4 5

9.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Optimal Page Replacement

9.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Least Recently Used (LRU) Algorithm

LRU replaces page that has not been used for the longest time

Use the recent past to predict the future

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1

2

3

5

4

4 3

5

8 page faults

9.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

LRU Page Replacement

9.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

LRU Algorithm (Cont.)

Counter implementation

Every page entry has a counter; every time page is referenced

through this entry, copy the clock into the counter

When a page needs to be replaced, look at the counters to

determine which has the oldest time-of-access

Stack implementation – keep a stack of page numbers in a double

link form:

Page referenced -> move it to the top of stack

 bottom of stack will be the LRU page

No search for replacement

9.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Use Of A Stack to Record The Most Recent Page References

9.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Thrashing

If a process does not have “enough” frames, the page-fault rate is

very high. This leads to:

low CPU utilization

operating system thinks that it needs to increase the degree of

multiprogramming

another process added to the system

Thrashing  a process is busy swapping pages in and out

9.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Thrashing (Cont.)

9.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Let P be the page fault rate
Effective Memory Access Time = p * (page fault service time) + (1
- p) * (Memory access time)
= (1/(10^6))* 1 * (10^6) ns + (1 - 1/(10^6)) * 2 ns

Let the page fault service time be 1ms in a computer with average

memory access time being 2ns. If one page fault is generated for every

1000000 memory access, what is the effective access time for the

memory in nanosecond? [1 millisecond= 1000000 nanosecond]

9.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Demand Paging and Thrashing

Why does demand paging work?

Locality model

Locality = set of pages in active use

Process migrates from one locality to another, e.g. main

function, subroutine

Localities may overlap

Why does thrashing occur?

size of locality > size of allocated frames

9.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Page-Fault Frequency Scheme

Establish “acceptable” page-fault rate

If actual rate too low, process loses frame

If actual rate too high, process gains frame

9.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Other Issues -- Prepaging

Prepaging

To reduce the large number of page faults that occurs at process

startup

Prepage all or some of the pages a process will need, before

they are referenced

But if prepaged pages are unused, I/O and memory was wasted

Assume s pages are prepaged and a fraction α of the s pages is

used (0 <= α <= 1)

 Is cost of s * α saved pages faults > or < than the cost of

prepaging s * (1- α) unnecessary pages?

 α near zero  prepaging loses

 α near one  prepaging wins

End of Chapter 9

