Chapter 9: Virtual Memory
GIBBD DI IBBD DI IBBBIIGIIBD I




Background

0 Virtual memory — separation of user logical memory from physical
memory.

0 Only part of the program needs to be in memory for execution.

0 Logical address space can therefore be much larger than
physical address space.

0 Allows address spaces to be shared by several processes.

0 Allows for more efficient process creation.

0 Virtual memory can be implemented via:
0 Demand paging
0 Demand segmentation

¥V

Operating System Concepts 9.2 Silberschatz, Galvin and Gagnhe ©2005



Virtual Memory That is Larger Than Physical Memory

page 0
page 1
page 2 //—\
—
— OO0
e i ul
memory
page v physical
. memory
virtual
memory
Pawiin
Operating System Concepts 9.3 Silberschatz, Galvin and Gagne ©2005




Operating System Concepts

Virtual-address Space

Max

stack

heap

data

code

9.4

Silberschatz, Galvin and Gagne ©2005



Demand Paging

O Bring a page into memory only when it is needed
0 Less I/O needed
0 Less memory needed
0 Faster response
0 More users

0 Page is needed = reference to it
0 invalid reference = abort

0 not-in-memory = bring to memory

Operating System Concepts 9.6 Silberschatz, Galvin and Gagnhe ©2005



Valid-Invalid Bit

With each page table entry a valid—invalid bit is associated
(1 = in-memory, 0 = not-in-memory)

Initially valid—invalid but is set to O on all entries
Example of a page table snapshot:

Frame # valid-invalid bit

page table

Operating System Concepts 9.7 Silberschatz, Galvin and Gagnhe ©2005



Page Table When Some Pages Are Not in Main Memory

0
1
0 A 2
valid—invalid
1 B frame bit 3 //\
2| C of 4 \f 410 R ———
3 D 1 i 5 I:l I:l I:l
(| E > Bl o ¢ ]
5 F 4 i 7
5/9 |v IE'
bl G 6 i 8
7 H 7 i 9 F I:l I:l
. page table
mary 10 [ 1 ][]
11
w
12
13
14
15

physical memory

Operating System Concepts 9.8 Silberschatz, Galvin and Gagne ©2005



Page Fault

O If there is ever a reference to a page, first reference will trap
to OS = page fault

O OS looks at another table to decide:
0 Invalid reference = abort.
0 Just not in memory.
Find empty frame.
Load page from disk into frame.
Reset tables, validation bit = 1.
Restart instruction that caused page fault

O O O 0O

Operating System Concepts 9.9 Silberschatz, Galvin and Gagnhe ©2005



Steps in Handling a Page Fault

page is on
backing store

F 3

operating
system

reference

load M

@J@

@

trap

restart page table
instruction
reset page
table

free frame =

\\_//

~

physical
memory

@

bring in
missing page

Operating System Concepts

9.10

Silberschatz, Galvin and Gagne ©2005



What happens if there is no free frame?

0 Page replacement — find some page in memory, but
not really in use, swap it out

0 algorithm

0 performance — want an algorithm which will result
In minimum number of page faults

0 Same page may be brought into memory several
times

Operating System Concepts 9.11 Silberschatz, Galvin and Gagnhe ©2005



Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement
algorithm to select a victim frame

3. Read the desired page into the (newly) free frame. Update the
page and frame tables.

4. Restart the process

Operating System Concepts 9.13 Silberschatz, Galvin and Gagnhe ©2005



Page Replacement

frame valid—invalid bit

N N

swap out
Change victim
0 |i to invalid page
flv ;S;lﬁﬁ"—"'
@ f| victim 9

reset page \
table for
page table
new page @ swap \

desired
page in

physical
memory

Operating System Concepts 9.14 Silberschatz, Galvin and Gagne ©2005



Page Replacement

0 Use modify (dirty) bit to reduce overhead of page transfers — only
modified pages are written to disk

0 Page replacement completes separation between logical memory
and physical memory — large virtual memory can be provided on a
smaller physical memory

0 Solve two problems in demand paging implementation:

0 Frame-allocation algorithm — how many frames to allocate to each
process |

0 Page-replacement algorithm — select frames to be replaced

Operating System Concepts 9.15 Silberschatz, Galvin and Gagnhe ©2005



—_
o

number of page faults

N~ o @

S

2 3 4

number of frames

Operating System Concepts

9.16

Silberschatz, Galvin and Gagnhe ©2005



Page Replacement Algorithms

0 Want lowest page-fault rate

0 Evaluate algorithm by running it on a particular string of
memory references (reference string) and computing the
number of page faults on that string

O In all our examples, the reference string is
1,2,3,4,1,2,5,1,2,3,4,5

Operating System Concepts 9.17 Silberschatz, Galvin and Gagnhe ©2005



First-In-First-Out (FIFO) Algorithm

0 Referencestring: 1,2,3,4,1,2,5,1,2,3,4,5
0 3 frames (3 pages can be in memory at a time per process)

2 2|1 3 9page faults

0 4 frames 33| 2 4
111|5 4
2 12| 1 5 10page faults
3 (3|2
4 1413

0 FIFO Replacement — Belady’s Anomaly
0 more frames = more page faults

Operating System Concepts 9.18 Silberschatz, Galvin and Gagnhe ©2005



FIFO Page Replacement

reference string
1

7 01 2 0 3 0 4 2 3 032 12 01 7 0
2] 2] 4] [4] |4 o 0| 0 7] 7] |7
| |9] o] o] 1] jo] |
LB B B el fof [of [8] [8] 2] [2] !

page frames

Operating System Concepts 9.19 Silberschatz, Galvin and Gagne ©2005



- FIFO lllustrating Belady’s Anomaly

16
14

number of page faults
o ™
@

N &~ OO @

1 2 3 4 5 6 7
number of frames

Operating System Concepts 9.20 Silberschatz, Galvin and Gagne ©2005



Optimal Algorithm

0 Replace page that will not be used for longest period of time
0 4 frames example
1,2,3,4,1,2,5,1,2,3,4,5

6 page faults

WP

0 How do you know this?
0 Used for measuring how well your algorithm performs

Operating System Concepts 9.21 Silberschatz, Galvin and Gagnhe ©2005



Optimal Page Replacement

reference string

/7 0 1 2 0 3
| |o] o] o] o o 0
HRERERi

page frames

EE

Operating System Concepts 9.22 Silberschatz, Galvin and Gagne ©2005



Least Recently Used (LRU) Algorithm

O LRU replaces page that has not been used for the longest time

0 Use the recent past to predict the future

0 Referencestring: 1,2,3,4,1,2,5,1,2,3,4,5

1|5

2 8 page faults
3|5 4

413

Operating System Concepts 9.23 Silberschatz, Galvin and Gagnhe ©2005



LRU Page Replacement

reference string
o 1 7 0 1

/7 0 1 2 0 3 0 4 2 3 0 3 2 1 2

4] 4] 4] o]
o] o] [o] |o] o] o} |3] |3 o o
HaERiRi

page frames

Operating System Concepts 9.24 Silberschatz, Galvin and Gagne ©2005



LRU Algorithm (Cont.)

0 Counter implementation

0 Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

0 When a page needs to be replaced, look at the counters to
determine which has the oldest time-of-access

0 Stack implementation — keep a stack of page numbers in a double
link form:

0 Page referenced -> move it to the top of stack
» bottom of stack will be the LRU page
0 No search for replacement

Operating System Concepts 9.25 Silberschatz, Galvin and Gagnhe ©2005



Use Of A Stack to Record The Most Recent Page References

4

reference string

/7 0 7 1 0 1 2

2 7

1 2

0 1

7 0

4 4
stack stack
before after

a b

Operating System Concepts

9.26

Silberschatz, Galvin and Gagne ©205



Thrashing

O If a process does not have “enough” frames, the page-fault rate is
very high. This leads to:

0 low CPU utilization

0 operating system thinks that it needs to increase the degree of
multiprogramming

0 another process added to the system

0 Thrashing = a process is busy swapping pages in and out

Operating System Concepts 9.27 Silberschatz, Galvin and Gagnhe ©2005



Thrashing (Cont.)

|
| thrashing

CPU utilization

degree of multiprogramming

Operating System Concepts 9.28 Silberschatz, Galvin and Gagne ©2005



Let the page fault service time be 1ms in a computer with average
memory access time being 2ns. If one page fault is generated for every
1000000 memory access, what is the effective access time for the
memory in nanosecond? [1 millisecond= 1000000 nanosecond]

Let P be the page fault rate

Effective Memory Access Time = p * (page fault service time) + (1
- p) * (Memory access time)

= ( 1/(10%6) )* 1 * (1076) ns + (1 - 1/(1076)) * 2 ns

Operating System Concepts 9.29 Silberschatz, Galvin and Gagnhe ©2005



Demand Paging and Thrashing

0 Why does demand paging work?

0 Locality model
0 Locality = set of pages in active use

0 Process migrates from one locality to another, e.g. main
function, subroutine

0 Localities may overlap

0 Why does thrashing occur?
0 size of locality > size of allocated frames

Operating System Concepts 9.30 Silberschatz, Galvin and Gagnhe ©2005



0 Establish “acceptable” page-fault rate
0 If actual rate too low, process loses frame

0 If actual rate too high, process gains frame

Page-Fault Frequency Scheme

page-fault rate

increase number
of frames

upper bound

lower bound
decrease number
of frames

number of frames

Operating System Concepts

9.31

R

Silberschatz, Galvin and Gagne ©2005



Other Issues -~ Prepaging

O Prepaging

0 To reduce the large number of page faults that occurs at process
startup

0 Prepage all or some of the pages a process will need, before
they are referenced

0 Butif prepaged pages are unused, I/O and memory was wasted

0 Assume s pages are prepaged and a fraction a of the s pages is
used (0 <=a<=1)

» Is cost of s * a saved pages faults > or < than the cost of
prepaging s * (1- a) unnecessary pages?

» @ near zero = prepaging loses
» @ near one = prepaging wins

Operating System Concepts 9.32 Silberschatz, Galvin and Gagnhe ©2005



End of Chapter 9
GIFBBIIGIBBIIIIBBDIIGIIBB I




