
Software Quality Assurance

What is Software Quality?

 Quality is an attribute of software that
implies the software meets its specification

 The assessment of software quality is a
subjective process where the quality
management team has to use their
judgment to decide if an acceptable level
of quality has been achieved.

What is Software Quality?

 The quality management team has to consider

whether or not the software is fit for its intended

purpose. This involves answering questions about the

system’s characteristics.

1. Have programming and documentation standards been followed in

the development process?

2. Has the software been properly tested?

3. Is the software sufficiently dependable to be put into use?

4. Is the performance of the software acceptable for normal use?

5. Is the software usable?

6. Is the software well structured and understandable?

Software Quality Attributes

 Safety

 Security

 Reliability

 Resilience

 Robustness

 Understandability

 Testability

 Adaptability

 Modularity

 Complexity

 Portability

 Usability

 Reusability

 Efficiency

 Learnability

Important software quality attributes are:

Software Quality Assurance

 To ensure quality in a software product, an organization must have a

three-prong approach to quality management:

 Organization-wide policies, procedures and standards must be established.

 Project-specific policies, procedures and standards must be tailored from
the organization-wide templates.

 Quality must be controlled; that is, the organization must ensure that the
appropriate procedures are followed for each project

 Standards exist to help an organization draft an appropriate software

quality assurance plan.

 ISO 9000-3

 ANSI/IEEE standards

 External entities can be contracted to verify that an organization is

standard-compliant.

SQA Activities

 Applying technical methods

 To help the analyst achieve a high quality specification and a high quality design

 Conducting formal technical reviews

 A stylized meeting conducted by technical staff with the sole purpose of uncovering quality
problems

 Testing Software

 A series of test case design methods that help ensure effective error detection

 Enforcing standards

 Controlling change

 Applied during software development and maintenance

 Measurement

 Track software quality and asses the ability of methodological and procedural changes to
improve software quality

 Record keeping and reporting

 Provide procedures for the collection and dissemination of SQA information

Advantages of SQA

 Software will have fewer latent defects,

resulting in reduced effort and time spent

during testing and maintenance

 Higher reliability will result in greater customer

satisfaction

 Maintenance costs can be reduced

 Overall life cycle cost of software is reduced

Disadvantages of SQA

 It is difficult to institute in small organizations,
where available resources to perform
necessary activities are not available

 It represents cultural change - and change is
never easy

 It requires the expenditure of dollars that would
not otherwise be explicitly budgeted to
software engineering or QA

Reviews and inspections

 Reviews and inspections are QA activities that check the quality

of project deliverables.

 A group examines part or all of a process or system and its

documentation to find potential problems.

 Software or documents may be 'signed off' at a review which

signifies that progress to the next development stage has been

approved by management.

 There are different types of review with different objectives

 Inspections for defect removal (product);

 Reviews for progress assessment (product and process);

 Quality reviews (product and standards).

9

Quality reviews

 A group of people carefully examine part or all

of a software system and its associated

documentation.

 Code, designs, specifications, test plans,

standards, etc. can all be reviewed.

 Software or documents may be 'signed off' at a

review which signifies that progress to the next

development stage has been approved by

management.

10

The software review process

11

Program inspections

 These are peer reviews where engineers examine the

source of a system with the aim of discovering

anomalies and defects.

 Inspections do not require execution of a system so

may be used before implementation.

 They may be applied to any representation of the

system (requirements, design, configuration data, test

data, etc.).

 They have been shown to be an effective technique

for discovering program errors.

12

Software measurement and

metrics

 Software measurement is concerned with deriving

a numeric value for an attribute of a software

product or process.

 This allows for objective comparisons between

techniques and processes.

 Although some companies have introduced

measurement programmes, most organisations still

don’t make systematic use of software

measurement.

 There are few established standards in this area.

13

Software metric

 Any type of measurement which relates to a software

system, process or related documentation

 Lines of code in a program, the Fog index, number of person-

days required to develop a component.

 Allow the software and the software process to

be quantified.

 May be used to predict product attributes or to control the

software process.

 Product metrics can be used for general predictions or to

identify anomalous components.

14

Product metrics

 A quality metric should be a predictor of product quality.

 Classes of product metric

 Dynamic metrics which are collected by measurements

made of a program in execution;

 Static metrics which are collected by measurements made of

the system representations;

 Dynamic metrics help assess efficiency and reliability

 Static metrics help assess complexity, understandability and

maintainability.

15

Fan-in/Fan-out, Length of code

 Fan-in/Fan-out

 Fan-in is a measure of the number of functions or methods that call

another function or method (say X). Fan-out is the number of

functions that are called by function X. A high value for fan-in

means that X is tightly coupled to the rest of the design and

changes to X will have extensive knock-on effects. A high value for

fan-out suggests that the overall complexity of X may be high

because of the complexity of the control logic needed to

coordinate the called components.

 Length of code

 This is a measure of the size of a program. Generally, the larger the

size of the code of a component, the more complex and error-

prone that component is likely to be. Length of code has been

shown to be one of the most reliable metrics for predicting error-

proneness in components.

CYCLOMATIC COMPLEXITY

 This is a measure of the control complexity of a

program. This control complexity may be related to

program understandability.

 The complexity M is then defined as

M = E − N + 2P,where

 E = the number of edges of the graph.

 N = the number of nodes of the graph.

 P = the number of connected components.

CYCLOMATIC COMPLEXITY

 The complexity M is then defined as

M = R + 1,

where R = the number of regions in the graph.

 The complexity M is then defined as

M = P + 1,

where P = the number of predicate nodes in the graph.

These two formulas are easy to use.

SPECIALIZATION INDEX (SIX)

The metric provides a percentage, where the class contains at

least one operation. For a root class, the specialization indicator

is zero. Nominal range is between 0 % and 120 %.

Example:

NMO – Number of Overridden Methods

not Overloaded.

How to calculate DIT :

DIT(D) = 2

DIT(E) = 1

Calculating SIX

Class Person{

void read();

void display();

}

Class Student extends Person{

void red();

void display();

Void getAverage();

}

Class GraduateStudent extends Student{

void red();

void display();

Void workStatus();

}

DEFECT REMOVAL EFFICIENCY

 A defect is found when the application does not conform to the

requirement specification.

 A mistake in coding is called Error

 An average DRE score is usually around 85% across a full testing

program.

 DRE = E / (E + D) where:

 E is the number of errors found before delivery of the software to the end-
user

 D is the number of defects found after delivery.

 We found 100 defects during the testing phase and then later, say

within 90 days after software release (in production), found five

defects,

DRE = 100/(100+5) = 95.2%

Fog index

 This is a measure of the average length of words and sentences in

documents. The higher the value of a document’s Fog index, the

more difficult the document is to understand. The formula for the

index is as follows:

 Fog index = ((average number of words per sentence) + (number of

words of 3 syllables or more)) * 0.4

 The "ideal" score is 7 or 8; anything above 12 is too hard for most

people to read.

 Average sentence length = 102/4 = 25 words

 Number of "big words" = 9

 Fog Index = (25 + 9) * 0.4 = * 0.4 = 13.6

Key points

 Reviews of the software process deliverables involve a team of

people who check that quality standards are being followed.

 In a program inspection or peer review, a small team

systematically checks the code. They read the code in detail

and look for possible errors and omissions

 Software measurement can be used to gather data about

software and software processes.

 Product quality metrics are particularly useful for highlighting

anomalous components that may have quality problems.

24

