
Class #3

Problem Solving as Search

Building goal-based agents

To build a goal-based agent we need to answer the

following questions:

– What is the goal to be achieved?

– What are the actions?

– What relevant information is necessary to encode in

order to describe the state of the world, describe the

available transitions, and solve the problem?

Initial

state

Goal

state
Actions

What is the goal to be achieved?

• Could describe a situation we want to achieve, a set of

properties that we want to hold, etc.

• Requires defining a “goal test” so that we know what it

means to have achieved/satisfied our goal.

What are the actions?

• Characterize the primitive actions or events that are

available for making changes in the world in order to

achieve a goal.

• Deterministic world: no uncertainty in an action’s effects.

Given an action (a.k.a. operator or move) and a description

of the current world state, the action completely specifies

– whether that action can be applied to the current world

(i.e., is it applicable and legal), and

– what the exact state of the world will be after the action

is performed in the current world (i.e., no need for

“history” information to compute what the new world

looks like).

Representing actions

• Note also that actions in this framework can all be considered
as discrete events that occur at an instant of time.
– For example, if “Mary is in class” and then performs the action “go

home,” then in the next situation she is “at home.” There is no
representation of a point in time where she is neither in class nor at
home (i.e., in the state of “going home”).

• The number of actions / operators depends on the
representation used in describing a state.
– In the 8-puzzle, we could specify 4 possible moves for each of the 8

tiles, resulting in a total of 4*8=32 operators.

– On the other hand, we could specify four moves for the “blank” square
and we would only need 4 operators.

• Representational shift can greatly simplify a problem!

Representing states

• What information is necessary to encode about the world to

sufficiently describe all relevant aspects to solving the goal?

That is, what knowledge needs to be represented in a state

description to adequately describe the current state or

situation of the world?

• The size of a problem is usually described in terms of the

number of states that are possible.

– Tic-Tac-Toe has about 39 states.

– Checkers has about 1040 states.

– Rubik’s Cube has about 1019 states.

– Chess has about 10120 states in a typical game.

Closed World Assumption

• We will generally use the Closed World

Assumption.

• All necessary information about a problem domain

is available in each percept so that each state is a

complete description of the world.

• There is no incomplete information at any point in

time.

Some example problems

• Toy problems and micro-worlds

– 8-Puzzle

– Missionaries and Cannibals

– Cryptarithmetic

– Remove 5 Sticks

– Water Jug Problem

• Real-world problems

Missionaries and Cannibals

There are 3 missionaries, 3 cannibals,

and 1 boat that can carry up to two

people on one side of a river.

• Goal: Move all the missionaries and

cannibals across the river.

• Constraint: Missionaries can never be

outnumbered by cannibals on either side

of river, or else the missionaries are

killed.

• State: configuration of missionaries and

cannibals and boat on each side of river.

• Operators: Move boat containing some

set of occupants across the river (in

either direction) to the other side.

Missionaries and Cannibals Solution

Near side Far side

0 Initial setup: MMMCCC B -

1 Two cannibals cross over: MMMC B CC

2 One comes back: MMMCC B C

3 Two cannibals go over again: MMM B CCC

4 One comes back: MMMC B CC

5 Two missionaries cross: MC B MMCC

6 A missionary & cannibal return: MMCC B MC

7 Two missionaries cross again: CC B MMMC

8 A cannibal returns: CCC B MMM

9 Two cannibals cross: C B MMMCC

10 One returns: CC B MMMC

11 And brings over the third: - B MMMCCC

Some more real-world problems

• Route finding

• Touring (traveling salesman)

• Logistics

• VLSI layout

• Robot navigation

• Learning

Knowledge representation issues

• What’s in a state ?

– Is the color of the boat relevant to solving the Missionaries and

Cannibals problem? Is sunspot activity relevant to predicting the stock

market? What to represent is a very hard problem that is usually left to

the system designer to specify.

• What level of abstraction or detail to describe the world.

– Too fine-grained and we’ll “miss the forest for the trees.” Too coarse-

grained and we’ll miss critical details for solving the problem.

• The number of states depends on the representation and level

of abstraction chosen.

– In the Remove-5-Sticks problem, if we represent the individual sticks,

then there are 17-choose-5 possible ways of removing 5 sticks. On the

other hand, if we represent the “squares” defined by 4 sticks, then there

are 6 squares initially and we must remove 3 squares, so only 6-choose-

3 ways of removing 3 squares.

Formalizing search in a state space

• A state space is a graph (V, E) where V is a set of nodes

and E is a set of arcs, and each arc is directed from a node

to another node

• Each node is a data structure that contains a state

description plus other information such as the parent of the

node, the name of the operator that generated the node from

that parent, and other bookkeeping data

• Each arc corresponds to an instance of one of the

operators. When the operator is applied to the state

associated with the arc’s source node, then the resulting

state is the state associated with the arc’s destination node.

Formalizing search II

• Each arc has a fixed, positive cost associated with it

corresponding to the cost of the operator.

• Each node has a set of successor nodes corresponding to all

of the legal operators that can be applied at the source

node’s state.

– The process of expanding a node means to generate all of the

successor nodes and add them and their associated arcs to the state-

space graph

• One or more nodes are designated as start nodes.

• A goal test predicate is applied to a state to determine if its

associated node is a goal node.

Water Jug Problem
Given a full 5-gallon jug

and an empty 2-gallon

jug, the goal is to fill

the 2-gallon jug with

exactly one gallon of

water.

• State = (x,y), where x is

the number of gallons

of water in the 5-gallon

jug and y is # of gallons

in the 2-gallon jug

• Initial State = (5,0)

• Goal State = (*,1),

where * means any

amount

Name Cond. Transition Effect

Empty5 – (x,y)→(0,y) Empty 5-gal.

jug

Empty2 – (x,y)→(x,0) Empty 2-gal.

jug

2to5 x ≤ 3 (x,2)→(x+2,0) Pour 2-gal.

into 5-gal.

5to2 x ≥ 2 (x,0)→(x-2,2) Pour 5-gal.

into 2-gal.

5to2part y < 2 (1,y)→(0,y+1) Pour partial

5-gal. into 2-

gal.

Operator table

Water Jug Problem

• To solve this we have to make some assumptions not

mentioned in the problem. They are

• 1. We can fill a jug from the pump.

• 2. we can pour water out of a jug to the ground.

• 3. We can pour water from one jug to another.

• 4. There is no measuring device available.

0-3

3-0

3-3

4-2

0-2

2-0

8-Puzzle

Given an initial configuration of 8 numbered tiles on a 3 x

3 board, move the tiles in such a way so as to produce a

desired goal configuration of the tiles.

Formalizing search III

• A solution is a sequence of operators that is associated with

a path in a state space from a start node to a goal node.

• The cost of a solution is the sum of the arc costs on the

solution path.

– If all arcs have the same (unit) cost, then the solution cost is just the

length of the solution (number of steps / state transitions)

Key procedures to be defined in

State Space Search

• EXPAND

– Generate all successor nodes of a given node

• GOAL-TEST

– Test if state satisfies all goal conditions

• QUEUEING-FUNCTION

– Used to maintain a ranked list of nodes that are

candidates for expansion

Some issues

• Search process constructs a search tree, where

– root is the initial state and

– leaf nodes are nodes

• not yet expanded (i.e., they are in the list “nodes”) or

• having no successors (i.e., they’re “deadends” because no

operators were applicable and yet they are not goals)

• Search tree may be infinite because of loops even if state

space is small

• Return a path or a node depending on problem.

– E.g., in cryptarithmetic return a node; in 8-puzzle return a path

• Changing definition of the QUEUEING-FUNCTION leads

to different search strategies

Evaluating search strategies

• Completeness

– Guarantees finding a solution whenever one exists

• Time complexity

– How long (worst or average case) does it take to find a solution?

Usually measured in terms of the number of nodes expanded

• Space complexity

– How much space is used by the algorithm? Usually measured in

terms of the maximum size of the “nodes” list during the search

• Optimality/Admissibility

– If a solution is found, is it guaranteed to be an optimal one? That is,

is it the one with minimum cost?

