SEARCH TECHNIQUES

Search techniques

' '
Blind (uninformed Search) Heuristic (Informed Search)
| |
' ' . '
Depth first Breadth first Hill climbing A*
Search Search Search search
(DFS) (BFS)
Other blind search strategies are: .
»Depth-limited search (Extended DFS) Best-First Greedy
> Iterative-deepening search (Extended DFS) Search Search

> Uniform cost search
> Bi-directional search

Uninformed Vs Informed Search

Uninformed search: Use only the information available in the
problem definition. Example: breadth-first, depth-first, depth
limited, iterative deepening, uniform cost and bidirectional
search

Informed search: Use domain knowledge or heuristic to
choose the best move. Example. Greedy best-first, A*, IDA*,
and beam search

Uninformed Search

Breadth First Search

Applicationl:

Given the following state space (tree search), give the sequence of
visited nodes when using BFS (assume that the nodeO is the goal
state):

Breadth First Search

o%

Breadth First Search

A%

Breadth First Search

A/‘\o‘&‘

Breadth First Search

B,C,.D

S

Breadth First Search

B,C,.D.E

S

Breadth First Search

Breadth First Search

B,C,D,E,
F.G

/0?0

\
CH

Breadth First Search

B,C,D,E,
F.G,H

/0?0

\
H

Breadth First Search

/o’\-

B,C,D,E,
F.G.H,I

\
CH

Breadth First Search

B,C,D,E,
FlGlHlIlJl

/o’\-

\
CH

Breadth First Search

B,C,D,E,
FlGlHlIlJl

\
CH

Breadth First Search

B,C,D,E,
FlGlHlIlJl

\
CH

Breadth First Search

A,
B,C,D,E,
FlGlHlIlJl

c

\
CH

W

Breadth First Search

A,
B,C,D,E,
FlGlHlIlJl

K,L, M,N, &
o),

\
CH

&

Breadth First Search

A,
B,C,D,E,
FlGlHlIlJl

K,L, M,N,
Goal state: O

\
CH

Breadth First Search

The returned solution is the sequence of operators in the path:
A B G L,O

20

Depth First Search (DFS)

Application2:

Given the following state space (tree search), give the sequence of
visited nodes when using DFS (assume that the nodeO is the goal

/o’\-

\
CH

state):

W

21

Depth First Search

o%

AB,

Depth First Search

A%

Depth First Search

ABF,

A%

Depth First Search

Depth First Search

/o’o\-

ABF,
G K,

Depth First Search

/o’o\-

ABF,

Depth First Search

/o’o\-

A,B,F,
G,K,
L, O: Goal State

Depth First Search

The returned solution is the sequence of operators in the path:
ABGLO

29

Depth-Limited Search (DLS)

Application3:

Given the following state space (tree search), give the sequence of
visited nodes when using DLS (Limit = 2):

Limit =

0

Limit = (o

\
CH)

1
Limit =
2

W

30

Depth-Limited Search (DLS)

Depth-Limited Search (DLS)

AB,

Depth-Limited Search (DLS)

ABF,

Depth-Limited Search (DLS)

ABF,

Depth-Limited Search (DLS)

ABF,

/o\’o\-

Depth-Limited Search (DLS)

ABF,
G,
C,H,

o A%Q

2

Depth-Limited Search (DLS)

A,B,F,
G,
CH,
§ A‘
Ry
Limit = (B (D

2

Depth-Limited Search (DLS)

A,B,F,
G,
CH,
" A‘
s
Limit = (B (D

2

Depth-Limited Search (DLS)

A,B,F,
G,
CH,
D.I
A X z\
Limit = CH &),

2

Depth-Limited Search (DLS)

A,B,F,

G,

CH,

D.I

J,

| A X z\
Limit = CH (D

Depth-Limited Search (DLS)

A,B,F,

G,

CH,

D.I

)

L
Limit = (B (D

2

Depth-Limited Search (DLS)

DLS algorithm returns Failure (no solution)

The reason is that the goal is beyond the limit (Limit =2): the goal
depth is (d=4)

42

Iterative Deepening Search (1DS)

Application4:

Given the following state space (tree search), give the sequence of
visited nodes when using IDS:

Limit =
0
Limit =

43

Iterative Deepening Search (1DS)

DLS with bound =0

Iterative Deepening Search (IDS)

A,

Limit = ‘A

Iterative Deepening Search (IDS)

A, Failure

Limit = @y

0

Iterative Deepening Search (1DS)

DLS with bound = 1

Iterative Deepening Search (IDS)

A,

Iterative Deepening Search (IDS)

AB,

Limit = ‘%‘

1

Iterative Deepening Search (IDS)

Iterative Deepening Search (IDS)

AB,
C,
D,

Iterative Deepening Search (IDS)

AB
C,
D,

E
Limit = %

Iterative Deepening Search (IDS)

AB,
C,
D,

E, Failure &
Limit = (@ (0 (D

1

Iterative Deepening Search (IDS)

Iterative Deepening Search (IDS)

AB,

Iterative Deepening Search (IDS)

ABF,

Iterative Deepening Search (IDS)

ABF,

Iterative Deepening Search (1DS)

ABF,

Iterative Deepening Search (1DS)

ABF,
G,
C,H,

/o’o\-

\
H

Iterative Deepening Search (1DS)

ABF,
G,
C,H,

Iterative Deepening Search (1DS)

ABF,
G,
C,H,

LR

\
CH

2

Iterative Deepening Search (1DS)

A,B F,
G,
C,H,
Dl

Iterative Deepening Search (1DS)

ABF,
G,

C,H,

: ‘/{‘/0?0

\
CH

Limit =

Iterative Deepening Search (1DS)

A,B,F,
G,
C,H,
D,I

J,

E, Failure

Iterative Deepening Search (1DS)

DLS with bound = 3

Iterative Deepening Search (IDS)

Iterative Deepening Search (IDS)

AB,

Iterative Deepening Search (IDS)

ABF,

Iterative Deepening Search (1DS)

ABF,
G,

Iterative Deepening Search (1DS)

ABF,
G K,

Iterative Deepening Search (1DS)

ABF,
G K,

Iterative Deepening Search (1DS)

ABF,
G K,
L,

Limit =

Iterative Deepening Search (1DS)

ABF,
G K,
L,

Q\ D
H

Limit =

Iterative Deepening Search (1DS)

A,B,F,
G,K,
L,
C,H,
D,
% e
Wy

Limit =

Iterative Deepening Search (1DS)

ABF,
G K,
L,

C,H,
D.I,
(Q

\
CH

Limit =

Iterative Deepening Search (1DS)

ABF,

G,K,

L,

C,H,

D,I,M,

®
) @D,

Limit =

Iterative Deepening Search (1DS)

A,B,F,
G,K,
L
C.H,
D,I.M,
) (o
\
(W &)
Limit = *

Iterative Deepening Search (1DS)

A,B,F,
G,K,
L
C.H,
D,I.M,
IN, (o
\
(W (D
Limit = *

Iterative Deepening Search (1DS)

ABF,

G K,

L,

CH,

D,I,M,

JN, (o

E, \

) &),

Limit = *

Iterative Deepening Search (1DS)

A,B,F,
G,K,
L,
C,H,
D,I,M,
J,N,
E,Failure

Iterative Deepening Search (1DS)

DLS with bound =4

Iterative Deepening Search (IDS)

Iterative Deepening Search (IDS)

AB,

Iterative Deepening Search (IDS)

ABF,

Iterative Deepening Search (1DS)

ABF,
G,

Iterative Deepening Search (1DS)

ABF,
G K,

Iterative Deepening Search (1DS)

ABF,
G K,
L,

Iterative Deepening Search (1DS)

A,B,F,
G,K,
L, O: Goal State

Iterative Deepening Search (IDS)

The returned solution is the sequence of operators in the path:
ABGLO

89

Uniform Cost Search (UCS)

Main idea: Uniform-cost Search: Expand node with
smallest path cost g(n).

Implementation:
Engueue nodes In order of cost g(n).
QUEUING-FN:- Insert in order of increasing path cost.

Enqueue new node at the appropriate position in the queue so
that we dequeue the cheapest node.

Complete? Yes.

Optimal? Yes, if path cost is nondecreasing function of depth

Time Complexity: O(b9)

Space Complexity: O(b%), note that every node in the fringe keep in the queue.

90

Uniform Cost Search (UCS)

[x] =g(n)

path cost of node
n

91

Uniform Cost Search (UCS)

o e
3]

Uniform Cost Search (UCS)

[5]

[9]

Uniform Cost Search (UCS)

Uniform Cost Search (UCS)

[9]

[9] O 3]
4

[7] [8]

Uniform Cost Search (UCS)

[9]

[9] O 3]
4

[7] [8]

Uniform Cost Search (UCS)

Bidirectional Search

 |dea

— simultaneously search forward from S and backwards
from G

— stop when both “meet in the middle”
— need to keep track of the intersection of 2 open sets of
nodes
» What does searching backwards from G mean

—need a way to specify the predecessors of G
« this can be difficult,
* e.g., predecessors of checkmate in chess?

— what If there are multiple goal states?
—what if there is only a goal test, no explicit list?

98

What Criteria are used to Compare
different search techniques ?

As we are going to consider different techniques to search the problem
space, we need to consider what criteria we will use to compare them.

Completeness: Is the technique guaranteed to find an answer (if there is
one).

Optimality/Admissibility : does it always find a least-cost solution?
- an admissible algorithm will find a solution with minimum cost

Time Complexity: How long does it take to find a solution.

Space Complexity: How much memory does it take to find a solution.

99

Time and Space Complexity ?

Time and space complexity are measured in terms of:

The average number of new nodes we create when expanding a new
node is the (effective) branching factor b.

The (maximum) branching factor b is defined as the maximum nodes
created when a new node Is expanded.

The length of a path to a goal is the depth d.

The maximum length of any path in the state space m.

100

Properties of breadth-first search

» Complete? Yes it always reaches goal (if b Is
finite)
e Time? 1+b+b2+b3+... +bd + (b9+1-b)) = O(bd+1)
(this Is the number of nodes we generate)
» Space? O(b9*1) (keeps every node in memory,
either In fringe or on a path to fringe).

» Optimal? Yes (if we guarantee that deeper
solutions are less optimal, e.g. step-cost=1).

» Space Is the bigger problem (more than time)

Properties of depth-first search

» Complete? No: fails in infinite-depth spaces
Can modify to avoid repeated states along path

* Time? O(b™) with m=maximum depth

« terrible If m i1s much larger than d

— but if solutions are dense, may be much faster than
breadth-first

» Space? O(bm), I.e., linear space! (we only need to
remember a single path + expanded unexplored nodes)

* Optimal? No (It may find a non-optimal goal first)

102

Properties of iterative deepening search

« Complete? Yes
e Time? (d+1)b% + d bl + (d-1)b2 + ... + b9 = O(h?)

« Space? O(bd)
» Optimal? Yes, if step cost = 1 or increasing function of depth.

103

Uniform-cost search

Implementation: fringe = queue ordered by path cost
Equivalent to breadth-first if all step costs all equal.

Complete? Yes, if step cost > ¢
(otherwise it can get stuck in infinite loops)

Time? # of nodes with path cost < cost of optimal solution.

Space? # of nodes on paths with path cost < cost of optimal
solution.

Optimal? Yes, for any step cost.

104

Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes Yes No No Yes
Time oY) o€y owm) O(b) O(b?)
Space OB+t oI /)y O(bm) O(bl) O(bd)
Optimal? Yes Yes No No Yes

105

