
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

OS-3

7.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Model

System consists of resources

Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

Each resource type Ri has Wi instances.

Each process utilizes a resource as follows:

request

use

release

7.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

What is deadlock

Deadlock is a situation where a set of processes are blocked because each

process is holding a resource and waiting for another resource acquired by

some other process.

Consider an example when two trains are coming toward each other on same

track and there is only one track, none of the trains can move once they are in

front of each other.

7.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock Characterization

Mutual exclusion: only one process at a time can use a

resource

Hold and wait: a process holding at least one resource is

waiting to acquire additional resources held by other

processes

No preemption: a resource can be released only voluntarily

by the process holding it, after that process has completed

its task

Circular wait: there exists a set {P0, P1, …, Pn} of waiting

processes such that P0 is waiting for a resource that is held

by P1, P1 is waiting for a resource that is held by P2, …, Pn–1

is waiting for a resource that is held by Pn, and Pn is waiting

for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously.

7.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource-Allocation Graph

V is partitioned into two types:

P = {P1, P2, …, Pn}, the set consisting of all the processes

in the system

R = {R1, R2, …, Rm}, the set consisting of all resource

types in the system

request edge – directed edge Pi → Rj

assignment edge – directed edge Rj → Pi

A set of vertices V and a set of edges E.

7.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource-Allocation Graph (Cont.)

Process

Resource Type with 4 instances

Pi requests instance of Rj

Pi is holding an instance of Rj

Pi

Pi

Rj

Rj

7.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of a Resource Allocation Graph

7.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource Allocation Graph With A Deadlock

7.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Graph With A Cycle But No Deadlock

7.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Basic Facts

If graph contains no cycles  no deadlock

If graph contains a cycle 

if only one instance per resource type, then deadlock

if several instances per resource type, possibility of

deadlock

7.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Methods for Handling Deadlocks

Ensure that the system will never enter a deadlock

state:

Deadlock prevention

Deadlock avoidence

Allow the system to enter a deadlock state and then

recover

Ignore the problem and pretend that deadlocks never

occur in the system; used by most operating systems,

including UNIX

7.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock Prevention

Mutual Exclusion – not required for sharable resources

(e.g., read-only files); must hold for non-sharable resources

Hold and Wait – must guarantee that whenever a process

requests a resource, it does not hold any other resources

Require process to request and be allocated all its

resources before it begins execution, or allow process

to request resources only when the process has none

allocated to it.

Low resource utilization; starvation possible

Restrain the ways request can be made

7.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock Prevention (Cont.)

No Preemption –

If a process that is holding some resources requests

another resource that cannot be immediately allocated to

it, then all resources currently being held are released

Preempted resources are added to the list of resources

for which the process is waiting

Process will be restarted only when it can regain its old

resources, as well as the new ones that it is requesting

Circular Wait – impose a total ordering of all resource types,

and require that each process requests resources in an

increasing order of enumeration

7.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock Avoidance

Simplest and most useful model requires that each process

declare the maximum number of resources of each type

that it may need

The deadlock-avoidance algorithm dynamically examines

the resource-allocation state to ensure that there can never

be a circular-wait condition

Resource-allocation state is defined by the number of

available and allocated resources, and the maximum

demands of the processes

Requires that the system has some additional a priori information

available

7.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Safe State

When a process requests an available resource, system must

decide if immediate allocation leaves the system in a safe state

System is in safe state if there exists a sequence <P1, P2, …, Pn>

of ALL the processes in the systems such that for each Pi, the

resources that Pi can still request can be satisfied by currently

available resources + resources held by all the Pj, with j < I

That is:

If Pi resource needs are not immediately available, then Pi can

wait until all Pj have finished

When Pj is finished, Pi can obtain needed resources, execute,

return allocated resources, and terminate

When Pi terminates, Pi +1 can obtain its needed resources, and

so on

7.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Basic Facts

If a system is in safe state  no deadlocks

If a system is in unsafe state  possibility of deadlock

Avoidance  ensure that a system will never enter an

unsafe state.

7.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Safe, Unsafe, Deadlock State

7.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Banker’s Algorithm

It is a deadlock avoidance algorithm, this algorithm is applied

when there are multiple instances of a resource type.

Multiple instances

Each process must a priori claim maximum use

When a process requests a resource it may have to wait

When a process gets all its resources it must return them in a

finite amount of time

7.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Data Structures for the Banker’s Algorithm

Available: Vector of length m. If available [j] = k, there are k

instances of resource type Rj available

Max: n x m matrix. If Max [i,j] = k, then process Pi may request at

most k instances of resource type Rj

Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently

allocated k instances of Rj

Need: n x m matrix. If Need[i,j] = k, then Pi may need k more

instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

7.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:

Work = Available

Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both:

(a) Finish [i] = false

(b) Needi  Work

If no such i exists, go to step 4

3. Work = Work + Allocationi

Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

7.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource-Request Algorithm for Process Pi

Requesti = request vector for process Pi. If Requesti [j] = k then
process Pi wants k instances of resource type Rj

1. If Requesti  Needi go to step 2. Otherwise, raise error condition,
since process has exceeded its maximum claim

2. If Requesti  Available, go to step 3. Otherwise Pi must wait,
since resources are not available

3. Pretend to allocate requested resources to Pi by modifying the
state as follows:

Available = Available – Requesti;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

If safe  the resources are allocated to Pi

If unsafe  Pi must wait, and the old resource-allocation state
is restored

7.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Banker’s Algorithm

5 processes P0 through P4;

3 resource types:

A (10 instances), B (5instances), and C (7 instances)

Snapshot at time T0:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

7.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example (Cont.)

The content of the matrix Need is defined to be Max – Allocation

Need

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

The system is in a safe state since the sequence < P1, P3, P4, P2, P0>

satisfies safety criteria

7.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example: P1 Request (1,0,2)

Check that Request  Available (that is, (1,0,2)  (3,3,2)  true

Allocation Need Available

A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2>

satisfies safety requirement

Can request for (3,3,0) by P4 be granted?

Can request for (0,2,0) by P0 be granted?

