
OBJECT ORIENTED PROGRAMMING Abdullah Bin Kasem Bhuiyan

Toptic 1: Introduction



WHAT IS AN OBJECT?

In its basic definition, an object is an entity that contains both 
data and behavior. 

This is the key difference between the more traditional 
programming methodology, procedural programming, and 
O-O programming. 



PROCEDURAL PROGRAMMING

In procedural programming, code is placed into methods. 

 Ideally these procedures then become "black boxes", 
inputs come in and outputs go out. 

Data is placed into separate structures, and is 
manipulated by these methods.



O-O PROGRAMMING

The fundamental advantage of O-O programming is that the 
data and the operations that manipulate the data are both 
contained in the object. 

For example, when an object is transported across a 
network, the entire object, including the data and behavior, 
goes with it. 



OBJECT DATA

The data stored within an object represents the state of the object. 

 In O-O programming terminology, this data is called attributes. 



OBJECT BEHAVIORS

The behavior of an object is what the object can do. 

 In procedural languages the behavior is defined by 
procedures, functions, and subroutines. 



WHAT EXACTLY IS A CLASS?

A class is a blueprint/template for an object. 

When you instantiate an object, you use a class as the 
basis for how the object is built. 



WHAT EXACTLY IS A CLASS?

An object cannot be instantiated 
without a class. 

Classes can be thought of as the 
templates, or cookie cutters, for 
objects as seen in the next figure. 



PROCEDURAL VS OBJECT ORIENTED

Procedural Oriented Programming

❖In procedural programming, program 
is divided into small parts 
called functions.

❖Procedural programming follows top 
down approach.

❖There is no access specifier in 
procedural programming.

❖Procedural programming does not 
have any proper way for hiding data so 
it is less secure.

Object Oriented Programming

❖In object oriented programming, 
program is divided into small parts 
called objects.

❖Object oriented programming 
follows bottom up approach.

❖Object oriented programming have 
access specifiers like private, public, 
protected etc.

❖Object oriented programming provides 
data hiding so it is more secure.



PROCEDURAL VS OBJECT ORIENTED

Procedural Oriented Programming

❖In procedural programming, 
overloading is not possible.

❖Procedural programming is based 
on unreal world.

❖Examples: C, FORTRAN, Pascal, Basic 
etc.

Object Oriented Programming

❖Overloading is possible in object 
oriented programming.

❖Object oriented programming is based 
on real world.

❖Example: C++, Java, Python, C# etc.



BENEFITS OF OBJECT ORIENTATION

✓Faster development,

✓Reusability,

✓Increased quality

✓Information Hiding

✓Easy debugging

✓Object technology emphasizes modeling the real world and provides us with the 
stronger equivalence of the real world‘s entities (objects) than other methodologies.

✓Raising the level of abstraction to the point where application can be implemented 
in the same terms as they are described.



WHY OBJECT ORIENTATION?
To create sets of objects that work together concurrently to produce s/w that better, 
model their problem domain that similarly system produced by traditional 
techniques.
✓It adapts to

❑Changing requirements

❑Easier to maintain

❑More robust

❑Promote greater design

❑Code reuse

✓Higher level of abstraction

✓Seamless transition among different phases of software development

✓Encouragement of good programming techniques

✓Promotion of reusability



A CASE STUDY - A PAYROLL PROGRAM

Consider a payroll program that processes employee records at a small 
manufacturing firm. This company has three types of employees:

✓Managers: Receive a regular salary.

✓Office Workers: Receive an hourly wage and are eligible for overtime after 40 hours.

✓Production Workers: Are paid according to a piece rate.



STRUCTURED APPROACH



STRUCTURED APPROACH



AN OBJECT-ORIENTED APPROACH

What objects does the application need?
The goal of OO analysis is to identify objects and classes that support the 
problem domain and system's requirements.
Some general candidate classes are:
 Persons

 Places

 Things

Class Hierarchy
 Identify class hierarchy

 Identify commonality among the classes

 Draw the general-specific class hierarchy.



AN OBJECT-ORIENTED APPROACH



OO APPROACH



MAIN CONCEPTS OF OOP

1. Encapsulation---binding data and operations together

2. Abstraction----hiding the implementation complexity 

3. Polymorphism---many forms of an object

4. Inheritance---taking over the common attributes and operation 
from a class.


