

What Is Integration Testing?
The integration testing definition refers to assessing the communication between

separate software modules. Typically, the project team has to unit test the system

before moving on to integration testing. In the software development life cycle,

integration testing is the second step.

The main aim of integration testing is to make sure the differences in logic patterns

developers use when creating a module don’t compromise the connectivity of the

system. There are several approaches to integration testing:

• Top-down integration testing is the practice of prioritizing the validation
of complex, layered modules over low-level ones. In case one of the
modules is not ready for testing yet, QA teams use stubs.

• Bottom-up integration testing is the opposite method to top-down
integration testing. It implies validating basic modules first and
integrating the complex ones later. The reasoning behind the approach
is that it takes less time to create a low-level module — that’s why such
components should be tested even when the more complex parts of the
system are still in development.

• Big bang. If the testing team chooses this approach, it means that all
modules will be tested simultaneously. QA specialists that execute tests
by the big bang framework don’t test modules individually and instead
wait until they are fully complete. Such a testing strategy is not the most
efficient due to the high odds of missing major defects during testing.

• Mixed (or sandwiched) integration testing is a synchronized adoption of
top-down and bottom-up practices. By following this approach, the
testing team does not necessarily have to wait until either high- or low-
level modules are fully coded, testing whichever of the two is ready.

Integration Testing Objectives
By conducting integration testing, teams aim to ensure that the system has no

connectivity or communication issues on the level of software modules. If undetected,

integration failures are difficult and expensive to fix after the product’s release as

developers have to make in-depth system-level changes to remove these defects.

After the integration testing process is complete, the testing team can focus on

validating end-user journeys and usability.

The main integration testing objectives go as follows:

• Making sure that software modules work well when
you integrate them together. Integration testing ensures that the

connectivity between modules meets the requirements specified by the
testing plan.

• Find interface errors. During integration testing, both functional and
non-functional interface components are validated. After completing a
series of integration tests, the testing team should have full confidence
in the performance of the software’s interface.

• Ensure the synchronization between modules. Integration tests help
project teams ensure that software modules can function with no
defects simultaneously and are fully synchronized with each other.

• Fixes exception handling defects. Exception handling mechanisms
are crucial for high-assurance systems. Typically, such mechanisms are
presented in most programming languages. However, QA teams need
to ensure that the application is well protected against exception
handling defects — integration testing helps pinpoint weak spots and
red flags and mitigate the risks before the release of the final build.

Advantages of Integration Testing in Software Development

Integration testing in software testing is a must-have. It helps teams pinpoint weak

spots and system defects at the early stages of development and promotes more

confidence in the product.

Here are some integration testing advantages:

• Relatively fast testing process. Although it takes more time to run integration tests, as

opposed to validating separate system units, the process improves the speed and

facilitates end-to-end testing.

• High code coverage. Integration testing has a wide scope, allowing QA specialists to test

the entire system. The odds of missing out on a critical connectivity defect after a series

of integration tests are slim. Other than that, the process is easy to keep track of.

• Efficient system-level issue detection. Integration testing falls under the definition of

system-level testing since a tester has to combine modules and validate their joint

performance. Later, the team will get a better look at the system’s overall performance by

moving on to the next stage — system testing.

• Detects bugs early as it’s run at the early stages of development. Adopting integration

testing allows the project team to pinpoint security and connectivity issues in the early

stages of development. As such, integration testing offers developers superior control

over the product and promotes the awareness of system vulnerabilities.

Unit Testing Definition
If you compare unit vs integration testing, unit testing is the first testing activity in the

software testing life cycle. It’s a common practice for project teams to not involve

testers in these stages, asking developers to perform unit tests instead.

Unit testing does not require any specialized skills or well-trained workforce.

Although there’s been much backlash regarding the high cost and inefficiency of unit

tests, the approach has its own advantages.

Units are the objects of unit testing — these are the smallest components of a tested

system. As a software project typically consists of multiple units, automating unit

testing is a popular practice among QA teams.

The Objectives of Unit Test
In a nutshell, unit testing aims to separate system components and check their

individual functionality. Other than the primary objective, the approach helps tech

teams accomplish the following:

Find bugs early in the development

cycle

Unit testing allows introducing bugs and system defects early on in the development

process. This way, the development team can resolve issues before integrating the

units together and impacting the whole system.

Use unit testing logs as documentation

The logs of unit testing will offer the project team a detailed description of the system

on the micro-level. This testing method improves the interchangeability within the

team since a newcomer developer can rely on logs provided by peers to be more

familiar with the system. Unit testing provides a solid basic framework for

understanding and handling APIs.

Improve the efficiency of code reuse

Unit tests improve code reusability since the reused units are well-tested. If the

development team misses out on unit testing, the odds of reusing buggy code and

spawning numerous system failures in the future increase dramatically.

By testing the units beforehand, developers can be confident that there are no bugs or

compilation issues, and that the written code fulfills its function according to business

specification requirements.

Validate the behavior of the system’s

atomic behavioral unit

Missing out on unit testing will make other testing cycle stages considerably more

challenging since the impact of system failures will have a higher magnitude and is

likely to prevent the program from working altogether.

Testing every unit of a system individually is a way to ensure that code-level bugs

will not complicate integration or system testing.

Advantages of Unit Tests in

Software Development
Unit testing is considered, by many teams, an unneeded addition to a tester’s busy

working routine. Since it takes a while to unit-test the entire system, it’s common for

tech project managers to skip the stage altogether.

The truth is, unit testing should be integrated into the development routine since it’s

relatively cheap and easy to perform. The advantages of the approach are numerous

— here are but a few:

• It lowers maintenance costs. Testing early and often is a tried-and-true way to reduce

the number of testing expenses. In our experience, fixing a bug in the early stages of

development is about 4-5 times cheaper than coming back to it after the product is

released.

• Reduces uncertainty in the behavior of units. Unit testing in software testing helps

validate the performance of the basic code, offers a detailed description of a unit’s

behavior in the shape of testing documentation and logs, and increases the confidence in

the functionality of the backbone code among the tech team, as well as the acceptance of

the system by the project stakeholders.

• Helps detect changes that can break the design contract. Other than helping maintain

and change the code, unit tests help pinpoint the defects that break the design contracts.

The testing method helps improve code design as a whole, encouraging developers to

establish a uniform code interface and ensuring the test ability of every component.

• Doesn’t require a highly skilled team of testers and can be conducted by developers.

When conducting unit testing, developers don’t have to manage multi-layered interfaces

or write a complex test case. As a rule of thumb, most types of unit tests are executed in

an automated testing environment and don’t require superior concentration from the

testing team.

Unit testing Integration testing

Validates the system unit-by-unit
Assesses the system as a whole by integrating several modules
simultaneously

Fully autonomous — each unit is treated
as a separate system

Connected since the testing team predominantly pays attention to the
relationship between tested components

First level of software testing Follows unit testing in the SLDR

No reliance on dependencies Strongly relies on dependencies, involves the use of databases

Tests are faster to perform Tests are slower

Difference Between Unit Testing and Integration Testing

As we compared unit and integration testing, it’s evident that both approaches have

significant differences. To clarify the distinction between the two, take a look at the

unit test vs integration test comparative table.

Summary
Unit testing and integration testing are both a part of the software testing life cycle. The two

share a common objective — detecting software defects as early on as possible.

Usually performed by developers Requires an experienced testing team

Is performed at the coding level Is performed at the communication level

There’s a big difference between unit testing and integration testing. While the former

approaches the system as a series of modules and examines the interactions and proper

connectivity between them, the latter tests the product unit-by-unit.

If you want to conduct both of these software testing types, reach out to Performance Lab. Our

certified testers will bring forth the best testing practices to ensure your software is fully tested

and the results are well-documented to avoid post-release bugs and defects. Take a look at the

group of testing services our team offers. Leave us a message to discuss your idea and testing

needs in detail — our account manager will reach out to you shortly.

Unit Testing Vs Integration Testing Vs Functional Testing

Unit testing means testing individual modules of an application in isolation (without any

interaction with dependencies) to confirm that the code is doing things right.

Integration testing means checking if different modules are working fine when combined

together as a group.

Functional testing means testing a slice of functionality in the system (may interact with

dependencies) to confirm that the code is doing the right things.

Functional tests are related to integration tests; however, they signify to the tests that check the

entire application’s functionality with all the code running together, nearly a super integration

test.

Unit testing considers checking a single component of the system whereas functionality testing

considers checking the working of an application against the intended functionality described in

the system requirement specification. On the other hand, integration testing considers checking

integrated modules in the system.

And, most importantly, to optimize the return on investment (ROI), your code base should have

as many unit tests as possible, fewer integration tests and the least number of functional tests.

This is illustrated best in the following test pyramid:

https://performancelabus.com/
https://performancelabus.com/contacts/

Unit tests are easier to write and quicker to execute. The time and effort to implement and
maintain the tests increases from unit testing to functional testing as shown in the above
pyramid.

Example:
Let us understand these three types of testing with an oversimplified example.

E.g. For a functional mobile phone, the main parts required are “battery” and “sim card”.
Unit testing Example – The battery is checked for its life, capacity and other parameters.
Sim card is checked for its activation.
Integration Testing Example – Battery and sim card are integrated i.e. assembled in order
to start the mobile phone.
Functional Testing Example – The functionality of a mobile phone is checked in terms of
its features and battery usage as well as sim card facilities.

Now, let us now take a technical example of a login page:

https://www.softwaretestinghelp.com/unit-testing/
https://www.softwaretestinghelp.com/what-is-integration-testing/
https://www.softwaretestinghelp.com/guide-to-functional-testing/
User
Highlight

Almost every web application requires its users/customers to log in. For that,
every application has to have a “Login” page which has these elements:

• Account/Username
• Password
• Login/Sign in Button

For Unit Testing, the following may be the test cases:
• Field length – username and password fields.
• Input field values should be valid.
• The login button is enabled only after valid values (Format and lengthwise)

are entered in both the fields.
For Integration Testing, the following may be the test cases:

• The user sees the welcome message after entering valid values and pushing
the login button.

• The user should be navigated to the welcome page or home page after valid
entry and clicking the Login button.

Now, after unit and integration testing are done, let us see the additional test cases that
are considered for functional testing:

1. The expected behavior is checked, i.e. is the user able to log in by clicking
the login button after entering a valid username and password values.

2. Is there a welcome message that is to appear after a successful login?
3. Is there an error message that should appear on an invalid login?
4. Are there any stored site cookies for login fields?
5. Can an inactivated user log in?
6. Is there any ‘forgot password’ link for the users who have forgotten their

passwords?
There are much more such cases which come to the mind of a functional tester while
performing functional testing. But a developer cannot take up all cases while building Unit
and Integration test cases.

Thus, there are a plenty of scenarios that are yet to be tested even after unit and integration
testing.

It is now time to examine Unit, Integration and Functional testing one by one.

What is Unit Testing?
As the name suggests, this level involves testing a ‘Unit’.

Here unit can be the smallest part of an application that is testable, be it the smallest
individual function, method, etc. Software developers are the ones who write the unit test
cases. The aim here is to match the requirements and the unit’s expected behavior.

Below are a few important points about unit testing and its benefits:
• Unit testing is done before Integration testing by software developers

using white box testing techniques.
• Unit testing does not only check the positive behavior i.e. the correct output in

case of valid input, but also the failures that occur with invalid input.
• Finding issues/bugs at an early stage is very useful and it reduces the overall

project costs. As Unit testing is done before integration of code, issues found
at this stage can be resolved very easily and their impact is also very less.

• A unit test tests small pieces of code or individual functions so the
issues/errors found in these test cases are independent and do not impact
the other test cases.

• Another important advantage is that the unit test cases simplify and make
testing of code easier. So, it becomes easier to resolve the issues at a later
stage too as only the latest change in the code is to be tested.

• Unit test saves time and cost, and it is reusable and easy to maintain.

What is Integration Testing?
Integration testing is testing the integration of different part of the system together. Two
different parts or modules of the system are first integrated and then integration testing is
performed.

https://www.softwaretestinghelp.com/white-box-testing-techniques-with-example/

The aim of integration testing is to check the functionality, reliability, and performance of the
system when integrated.

Integration testing is performed on the modules that are unit tested first and then integration
testing defines whether the combination of the modules give the desired output or not.

Integration testing can either be done by independent testers or by developers too.

There are 3 different types of Integration testing approaches. Let us discuss each
one of them briefly:

a) Big Bang Integration Approach
In this approach, all the modules or units are integrated and tested as a whole at one time.
This is usually done when the entire system is ready for integration testing at a single point
of time.

Please do not confuse this approach of integration testing with system testing, only the
integration of modules or units is tested and not the whole system as it is done in system
testing.

The big bang approach’s major advantage is that everything integrated is tested at one
time.
One major disadvantage is that it becomes difficult to identify the failures.
Example: In the figure below, Unit 1 to Unit 6 are integrated and tested using the Big bang
approach.

b) Top-Down Approach
Integration of the units/modules is tested from the top to bottom levels step by step.

The first unit is tested individually by writing test STUBS. After this, the lower levels are
integrated one by one until the last level is put together and tested.
The top-down approach is a very organic way of integrating as it is consistent with how
things happen in the real environment.

The only concern with this approach is that the major functionality is tested at the end.

c) Bottom-Up Approach
Units/modules are tested from bottom to top level, step by step, until all levels of
units/modules are integrated and tested as one unit. Stimulator programs
called DRIVERS are used in this approach. It is easier to detect issues or errors at the lower
levels.
The major disadvantage of this approach is that the higher-level issues can only be
identified at the end when all the units have been integrated.

https://www.quora.com/What-is-the-difference-between-stubs-and-drivers-in-software-testing

Unit Testing vs Integration Testing
Having had enough discussion about unit testing and integration testing, let us quickly go
through the differences between the two in the following table:

Unit Testing Integration Testing

Tests the single component of the whole system i.e. tests

a unit in isolation.

Tests the system components working

together i.e. test the collaboration of multiple

units.

Faster to execute Can run slow

No external dependency. Any external dependency is

mocked or stubbed out.

Requires interaction with external

dependencies (e.g. Database, hardware, etc.)

Simple Complex

Conducted by developer Conducted by tester

It is a type of white box testing It is a type of black box testing

Carried out at the initial phase of testing and then can be

performed anytime

Must be carried out after unit testing and

before system testing

Cheap maintenance Expensive maintenance

Begins from the module specification Begins from the interface specification

Unit testing has a narrow scope as it just checks if each

small piece of code is doing what it is intended to do.

It has a wider scope as it covers the whole

application

The outcome of unit testing is detailed visibility of the

code

The outcome of integration testing is the

detailed visibility of the integration structure

Unit Testing Integration Testing

Uncover the issues within the functionality of individual

modules only. Does not exposes integration errors or

system-wide issues.

Uncover the bugs arise when different

modules interact with each other to form the

overall system

Functional Testing
A black box testing technique, where the functionality of the application is tested to generate
the desired output on providing a certain input is called ‘Functional testing’.
In our software testing processes, we do this by writing test cases as per the requirements
and scenarios. For any functionality, the number of test cases written can vary from one to
many.
Test cases basically comprise of the following parts:

• Test Summary
• Prerequisites (if any)
• Test case input steps
• Test data (if any)
• Expected output
• Notes (if any)

“Requirement-Based” and “Business scenario-based” are the two forms of functional
testing that are carried out.
In Requirement based testing, test cases are created as per the requirement and tested
accordingly. In a Business scenario based functional testing, testing is performed by
keeping in mind all the scenarios from a business perspective.

However, the major disadvantage of functional testing is the probable redundancy in
testing and the possibility of missing some logical errors.

Exact Difference
Let’s look at their differences.

Here are some of the major ones:

 Unit testing Integration testing Functional testing

Definition

and purpose

Testing smallest

units or modules

individually.

Testing integration of two

or more units/modules

combined for performing

tasks.

Testing the behavior of the

application as per the requirement.

Complexity Not at all complex

as it includes the

smallest codes.

Slightly more complex

than unit tests.

More complex compared to unit

and integration tests.

Testing

techniques

White box testing

technique.

White box and black box

testing technique. Grey

box testing

Black box testing technique.

https://www.softwaretestinghelp.com/black-box-testing/
https://www.softwaretestinghelp.com/what-is-actual-testing-process-in-practical-or-company-environment/
https://www.softwaretestinghelp.com/test-summary-report-template-download-sample/

 Unit testing Integration testing Functional testing

Major

attention

Individual modules

or units.

Integration of modules or

units.

Entire application functionality.

Error/Issues

covered

Unit tests find issues

that can occur

frequently in

modules.

Integration tests find

issues that can occur

while integrating

different modules.

Functional tests find issues that do

not allow an application to

perform its functionality. This

includes some scenario-based

issues too.

Issue escape No chance of issue

escape.

Less chance of issue

escape.

More chances of issue escape as

the list of tests to run is always

infinite.

