TESTING THROUGHOUT THE SOFTWARE LIFE CYCLE (II)

COMPILED BY -

NAZMUS SAKIB AKASH

2 Testing types: The targets of testing Test types and Test levels

Test levels

- The previous section explained the various testing levels, i.e. component test, integration test etc.
- At every test level, the test objectives have a different focus!
- Therefore different test types are applied during different test levels.

Test types

- Functional testing
 - (Goal: Testing of function)
- Non-functional testing
 - (Goal: Testing product characteristics)
- Structural Testing
 - (Goal: Testing of SW structure/architecture)
- Confirmation/regression testing
 - (Goal: Testing after changes)

3 Testing types: The targets of testing **Functional Testing**

• Goal: the function of the test object

- Functionality can be linked to input and output data of the test object
- **Black box methods** are applied to design the relevant test cases
- Testing is to verify functional requirements (as stated in specifications, concepts, case studies, business rules or relevant documents)
- Area of use
 - Functional testing may be performed at all test levels

• Execution

- The test object is executed using test data derived from test cases
- The result of the test execution are compared to the expected results
- Security testing
 - Type of functional testing delaying with external threats.
 - Malicious attacks could damage program or data.

Testing types: The targets of testing **Non Functional Testing**

• Goal: software product characteristics

- How well does the software perform its functions?
- The non-functional quality characteristics (ISO 9126): *reliability, usability, efficiency, maintainability, portability* are often vague, incomplete or missing all together, making testing difficult.

• Execution

 Compliance with the non-functional requirements is measured using selected functional requirements

• Area of use

- Non-Functional testing may be performed at all test levels
- Typical non-functional testing:
 - Load testing/ performance testing/ volume testing/ stress testing
 - Testing of safety features
 - Reliability and robustness testing / compatibility testing
 - Usability testing / configuration testing

5 Non Functional Testing I (System Test)

- Load test
 - System under load (minimum load, more user/tractions)
- Performance test
 - How fast does the system perform a certain function?
- Volume test
 - Processing huge volumes of data / files
- Stress test
 - Reaction to overload / recovery after return to normal

- Reliability test
 - Performance while in "continuous operation mode"

Test of robustness

- Reaction to input of wrong or unspecified data
- Reaction to hardware failures / disaster recovery

6 Non Functional Testing II (System Test)

Compliance testing

 Meeting rules and regulations (internal / external)

Test usability

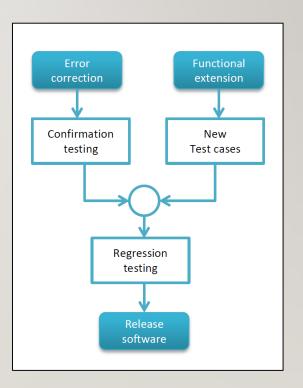
• Structured, understandable, easy to learn for user

- Other non-functional quality aspects:
 - **portability:** replace ability, installability, conformance/ compliance, adaptability
 - **maintainability:** verifiability, stability, analyzability, changeability
 - **reliability:** maturity, robustness, recoverability

7 Structural testing

Goal: Coverage

- Analyses the structure of the test object (white box approach)
- Testing aims at *measuring how well the structure of the test object is covered by the test case*
- Area of use
 - Structural testing possible on all test levels, code coverage testing using tools mainly done during component and integration testing.
 - Structural test design is finalized after *functional tests have been designed*, aiming at producing a high degree of coverage.


Execution

- Will test the internal structure of a test object (e.g. control flow within components, flow through a menu structure)
- Goal: all identified structural elements should be covered by test cases

8 Confirmation / Regression testing I

• Goal: test object after changes

- After a test object or its system environment has been changed, results related to the change have become invalid test has to be repeated.
- Two main reasons for changing software:
 - Error correction
 - Functional extension
- Because of undesired side effects of extended or new functionality, it is necessary to also retest adjacent areas!

9 Confirmation / Regression testing II

• Area of use

- Replacing a test of functionality that has already been verified is called a regression test.
- The **scope** of the regression test depends on the **risk**, that the newly implemented functionality (extension or error fix) imposes to the system.
- Analyzing this risk can be done with an **impact analysis**
- Confirmation / Regression testing may be performed at **all test levels**.
- Typical test after changes are:
 - Confirmation testing (= Testing after correction of errors)
 - Regression testing (= Testing to uncover newly introduced defects)

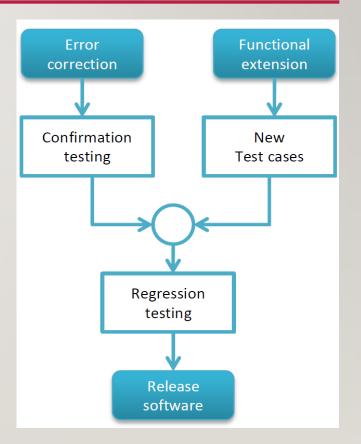
10 Confirmation / Regression testing III

• Execution

- Basically, execution takes place as in previously executed test iterations
- In most cases, **a complete regression test is not feasible**, because it is too expensive and takes too much time
- A high degree of modularity in the software allows for more appropriate reduced regression tests
- Criteria for the selection of the regression test cases:
 - Test case with high priority
 - Only test **standard functionality**, skip special cases and variations
 - Only test configuration that is used most often
 - Only test subsystem / selected areas of the test object
- If during early project phases, it becomes obvious that certain tests are suitable for regression testing, *test automation should be considered*.

II Testing after Product Acceptance I

- Customer has approved the product and sets it into production
 - The initial development cycle, including its related tests, has been completed
- The software itself is at the beginning of its life cycle:
 - it will be used for many years to come, it will be extended
 - it most likely still has errors, hence it will be further modified and corrected
 - it needs to adapt to new conditions and to be integrated into new environments
 - it will one day be retired, put out of operation.
- Any new version of the product, any new update and any other change in the software requires additional testing!


12 Testing after Product Acceptance II

Software maintenance covers two different fields:

- maintenance as such: **correction of error**, that already were part of the initial version of the software
- **software extension**: adaptations as a result of a *changed environment* or *new customer requirements*

Test scope of maintenance testing

- Error correction requires retests
- Extended functionality requires **new test case**
- Migration to another platform requires **operational tests**
- In addition, intensive regression testing is needed

13 Testing after Product Acceptance III

- Scope of testing is affected by the impact of the change
 - Impact analysis is used to determine the affected areas
 - Problems might occur if documentation of the *old software* is missing or incomplete
- Software **retirement**
 - Test after software retirement may include
 - Data migration test
 - Verifying archiving data and programs
 - Parallel testing of old and new systems

I4 Summary I

- On different test levels, different types of tests are used
- Test types are: functional, non-functional, structural and change-related testing
- Functional testing examines the input / output behavior of a test object
- Non-functional testing checks product characteristics
- Non-functional testing includes, but is not limited to, load testing, stress testing, performance testing, robustness testing
- Common structural tests are tests that check data and control flow within the test object, measuring the degree of coverage
- Important test after changes are: confirmation tests(re-tests) and regression tests

I5 Summary II

- Ready developed software needs to be adapted to new conditions, errors have to be corrected
- An impact analysis can help to judge the changes related risks
- Maintenance tests make sure , that
 - New function are implemented correctly (new test cases)
 - Error have been fixed successfully (old test cases)
 - Functionality, that has already been verified, is not affected (regression test)
- If software gets retired, migration tests or parallel tests may be necessary